Logo Amigan Software
Signetics-based Machines Coding/Gaming Guide

This document was written on 29/8/08, and last updated on 18/6/25, by James Jacobs of Amigan Software. Information herein is believed to be generally accurate, though some is tentative. If you have anything to contribute, please email us.

This page is part of Emerson Arcadia 2001 Central. Emulators, ROMs, manuals and other resources can be found there.

Emerson Arcadia 2001
├ Paddles
├ Graphics
├ Sound
├ Timing
├ Compiler 2001
├ Compatibility Notes
└ Gaming Guide
Interton VC 4000
├ 
Graphics
├ Compatibility Notes
└ Gaming Guide
Elektor TV Games Computer
├ 
Monitor BIOS
├ Signetics EOF (Elektor Object Format)
├ Magazine Articles
├ Compatibility Notes
└ Gaming Guide
PIPBUG/BINBUG-based machines
├ Teletype I/O
├ Cassette I/O
├ Papertape I/O
├ Printer I/O
├ Unarchived Software
├ BINBUG Hardware
├ BINBUG BIOS
├ Floppy Disk I/O
└ Game Help
Signetics Instructor 50
├ I/O Devices
├ USE BIOS
└ Game Help
Signetics TWIN
└ I/O Ports
Central Data 2650
├ Supervisor BIOS
├ Unarchived Software
└ Game Help
PHUNSY
├ Mini-PHUNSY
└ Game Help
Ravensburger Selbstbaucomputer
├ Monitor BIOS
└ Game Help
MIKIT 2650
└ Game Help
Coin-ops
├ Malzak
├ Astro Wars & Galaxia
├ Laser Battle & Lazarian
├ Zaccaria Pinball for Android
├ Zaccaria Pinball for Switch
└ Zaccaria Pinball for Windows
Multiplatform
├ 
Comparative Tables
├ 2650 CPU
├ 
Project Numbers
├ 
Component Numbers
├ 
Programming Languages Overview
├ 
File Formats Overview
└ 
Signetics AOF (Absolute Object Format)

Emerson Arcadia 2001

Region Size Emerson Arcadia 2001 Tele-Fever Palladium
$0000..$0FFF 4K cartridge ROM
$1000..$10FF 256 bytes mirror of $1800..$18FF CPU RAM cartridge ROM
$1100..$11FF 256 bytes mirror of $1900..$19FF cartridge ROM
$1200..$12FF 256 bytes mirror of $1A00..$1AFF CPU RAM cartridge ROM
$1300..$13FF 256 bytes mirror of $1B00..$1BFF cartridge ROM
$1400..$17FF 1K mirror of $1000..$13FF cartridge ROM
$1800..$1AFF 768 bytes CPU+UVI RAM:
$1800..$18CF 208 bytes upper screen
$18D0..$18EF 32 bytes user RAM
$18F0..$18F7 8 bytes hardware registers
$18F8..$18FB 4 bytes user RAM
$18FC..$18FF 4 bytes hardware registers
$1900..$1908 9 bytes hardware registers
$1909..$190F 7 bytes unmapped
$1910..$191F 16 bytes mirror of $1900..$190F?
$1920..$192F 16 bytes mirror of $1900..$190F?
$1930..$193F 16 bytes mirror of $1900..$190F?
$1940..$194F 16 bytes mirror of $1900..$190F?
$1950..$195F 16 bytes mirror of $1900..$190F?
$1960..$196F 16 bytes mirror of $1900..$190F?
$1970..$197F 16 bytes mirror of $1900..$190F?
$1980..$19BF 64 bytes hardware registers (sprite and UDG imagery)
$19C0..$19F7 56 bytes unmapped
$19F8..$19FF 8 bytes hardware registers
$1A00..$1ACF 208 bytes lower screen
$1AD0..$1AFF 48 bytes user RAM
$1B00..$1BFF 256 bytes mirror of $1900..$19FF
$1C00..$1FFF 1K mirror of $1800..$1BFF cartridge ROM
$2000..$2FFF 4K cartridge ROM
$3000..$3FFF 4K mirror of $1000..$1FFF cartridge ROM
$4000..$4FFF 4K mirror of $0000..$0FFF? cartridge ROM
$5000..$5FFF 4K mirror of $1000..$1FFF cartridge ROM
$6000..$6FFF 4K mirror of $0000..$0FFF? cartridge ROM
$7000..$7FFF 4K mirror of $1000..$1FFF cartridge ROM

Hardware equates/memory map

The architecture of the system is quite straightforward. A Signetics 2650 or 2650A CPU runs the programs and a Signetics 2637 UVI handles input and output. There are a pair of 2114 RAM chips. (There are also a few "glue" chips but these are irrelevant to programming (or emulating) the system.)

The ROM (game cartridge) is mapped to memory as already described. Execution starts from address $0000. (The CPU branches to address $0003 if an interrupt is generated at any time.) Addresses $1800..$1AFF are mapped to the UVI, I/O hardware and/or RAM. The game is not copied to RAM; it is instead run directly from ROM.

The chips may be in any state after a reset, and thus their contents should be cleared to known values at the start of the program to ensure proper operation.

The display is drawn by the UVI 60 times per second (for NTSC). The display is character-based (each character measuring 8*8 pixels), with programmable vertical and horizontal offsets. A choice of two resolutions (128*104 pixels or 16*13 characters, and 128*208 pixels or 16*26 characters) is available. The display is character-mapped, and thus does not need to be generated on the fly. There are 8 colours in the palette: black, white, red, green, blue, yellow, cyan and purple.

There are 56 characters stored in ROM, and 4 which are stored in RAM (and thus user-definable). Lowercase letters and most punctuation marks are not available. There is also a set of 64 "block graphics" characters which can be effectively "swapped in". Each character is displayed in a foreground and background colour. In mode 0 ("normal mode"), there are 4 foreground colours and 1 background colour available. In mode 1 ("board mode"), there are 2 foreground colours and 2 background colours available.

There are also four user-definable single-colour 8*8 sprites which can be freely positioned independently of the character display. The four sprite image definitions can also be used as user-defined graphics, just as with the four "true" user-defined graphics.

There are three buttons on the master console which can be detected by software. There are also twelve or more distinct buttons on each of the two controllers. Each controller also has a paddle, which can be digital or analogue.

There are two sound channels: a square wave channel (with 128 different frequencies possible), and a white noise channel (with 128 different modulations possible). There are 8 volume levels available.

Games are synchronized with the raster beam, as is usual for most systems. Many of the UVI registers can only be read or written at certain points in the frame. The vertical retrace status is available in the Sense pin of the CPU. (The Flag pin of the CPU can be used to invert the colours of all or part of the display.) All other UVI data is mapped to memory locations; specialized I/O commands are not used. The current character row being drawn by the UVI is available as a UVI register (mapped to a memory location). The current raster line being drawn by the UVI is not available but can of course be deduced by cycle counting. Horizontal retrace status is not available (but would deducable if bus DMA contention timings were known).

Arcadia-family BINs are stored and loaded as follows:

ROM Size On disk In memory ORG
4K $0000..$0FFF 1st 4K chunk $0000..$0FFF 1st half of 1st page $0000
8K $1000..$1FFF 2nd 4K chunk $2000..$2FFF 1st half of 2nd page $0000
12K $2000..$0FFF 3rd 4K chunk $4000..$4FFF 1st half of 3rd page $0000
16K $3000..$0FFF 4th 4K chunk $6000..$6FFF 1st half of 4th page $0000
20K $4000..$0FFF 5th 4K chunk $3000..$3FFF 2nd half of 2nd page $1000
24K $5000..$0FFF 6th 4K chunk $5000..$5FFF 2nd half of 3rd page $1000
28K $6000..$0FFF 7th 4K chunk $7000..$7FFF 2nd half of 4th page $1000
30K $7000..$77FF 2K chunk $1000..$17FF 3rd quarter of 1st page $1000
31K $7800..$7BFF 1K chunk $1C00..$1FFF 8th eighth of 1st page $1C00

Since no cartridges larger than 12K are known, this is somewhat arbitrary beyond 12K and definitely arbitrary beyond 16K.
Although Palladium supports up to 31K ROMs (presumably), Emerson and probably Tele-Fever support only up to 8K ROMs.
Cartridge RAM is not possible on any of these machines.
It is not possible to load from a cartridge into the 7th eighth of the 1st page ($1800..$1BFF); thus 32K ROMs are not possible.

Valid programs have certain startup requirements. Omitting these will not cause problems on most emulators but will cause problems on the genuine console. The machine at startup cannot be assumed to be in a known state; you should explicitly initialize it. A soft reset does not reinitialize the contents and status of the UVI, RAM, or even the CPU.
The fourth byte (ie. byte 3) should be $17, which is a RETC,UN instruction. You should use bytes 0..2 to jump past that byte. You would then typically clear then set the PSU and PSL, then wait, then clear memory.
Your code can begin immediately following this code, at byte $20 (32). Of course, some programs use a zero page jump table, so will have this routine stored elsewhere.

Standard bootstrap

Corrections to some common misconceptions about these machines:

There are 8 colours in the palette, not 9.

There is a clock of 3,579,545Hz at the 2621 USG (pin 12 clock). At pin 11 (PCK) there is a 3,579,545Hz clock which is connected to the 2637 UVI. At pin 10 (CK4) the 2650 is connected with a frequency of 894,886.25Hz, because the output divides the input frequency by 4. The frequency measured at the input pin of the 2650 is still the same.
Therefore, the effective speed is approx. 0.89MHz (approx. 3.58MHz 4), the same as the Interton VC 4000 has.

RAM is 1K (but Emerson-type has access to only half of this), not 28K.
"The Arcadia's makers didn't hook up the highest address line on their pair of 2114 RAM chips; so what should be 1K of RAM is only ½K of RAM." - Ward Shrake.
Even Tele-Fever and Palladium don't appear to have any way to access more than 768 bytes (the last 256 bytes should be mapped to $1B00..$1BFF but is not, and is thus wasted).

The are two sound channels (one tone and one noise), not one.

The "White MPT-03": there is no such system. This misconception arises from erroneous stickers affixed to some MPT-03 games, saying: "For use White Intelligent Game MPT-03". The intended meaning is "For use with Intelligent Game MPT-03".

Paddles

"The potentiometers [ie. P1PADDLE and P2PADDLE] read from $00 to $FE, and going to $FF when VRESET is low. I would assume the other Arcadia titles check to see if the potentiometer is [much] higher than $80 rather than simply looking for a value of $FF which doesn't happen on the real machine."

There are two paddles available. At any given moment they will either both contain X-coordinates or they will both contain Y-coordinates. Bit 6 of BGCOLOUR controls the paddle interpolation for both paddles. If this bit is 0, the Y-coordinates are available for reading. If it is 1, the X- coordinates are available. It seems that read the coordinates and then you set bit 6 of BGCOLOUR for which axis you want to read *next* frame. If you are only interested in one axis there is no need to flip the bit every frame, of course. You can only read the coordinates during vertical blank; reading them while the screen is being drawn will always give $FF.

Also, the Emerson and Schmid (at least) have ports to connect up to two additional hand controllers. The MPT-03 (at least) does not. No known games seem to support these. The hardware in question (unpluggable hand controllers) does not seem to have ever been officially produced, though it would presumably be trivial to develop such hardware, or to modify a "non-unpluggable" hand controller (by cutting the cable and adding a plug) for the purpose. The memory addresses at which these hand controllers would appear is not known (most likely somewhere in the $1909..$190F and/ or $19C0..$19F7 regions). Support for these hand controllers could be added to the emulators if the addresses were known.

The ranges used by each game for each direction are somewhat different. The values returned by the paddles are in fact different on each individual machine, and probably somewhat different for each individual hand controller. A value of $66 or $6A for a centred paddle appears most common.

Game Left/Up Centred Right/Down
Alien Invaders $00..$35 $36..$7D $7E..$FE
Circus $00..$3A $3B..$93 $94..$FE
Hobo $00..$37 $38..$98 $99..$FE
Space Squadron $00..$2F $30..$A8 $A9..$FE

Only rough values are used in the table below:

     X      Y     Paddle is being pushed
    ------------------------------------
    $00    $00    up and left
    $70    $00    up                 +---------+---------+---------+
    $FE    $00    up and right       |   0,0   | $70,0   | $FE,0   |
    $00    $70    left               +---------+---------+---------+
    $70    $70    centred            |   0,$70 | $70,$70 | $FE,$70 |
    $FE    $70    right              +---------+---------+---------+
    $00    $FE    down and left      |   0,$FE | $70,$FE | $FE,$FE |
    $70    $FE    down               +---------+---------+---------+
    $FE    $FE    down and right

Note that these are read-once registers: they can only be read (once) during vblank, and can never be written.

$19FE: P2PADDLE: Right paddle status (8 bits) (read-once)
$19FF: P1PADDLE: Left paddle status (8 bits) (read-once)
During VRST, returns $00..$FE
When mux=0: about $00=up, about $70=middle, about $f1=down
When mux=1: about $07=left, about $70=middle, about $f1=right
While not in VRST, returns $FF

Graphics

3-bit colour codes (eg. as used for background and sprite colours) are as follows (referred to as "standard format" hereafter):

GRB With Flag off With Flag on
%000 White Black
%001 Yellow Blue
%010 Cyan Red
%011 Green Purple (magenta)
%100 Purple (magenta) Green
%101 Red Cyan
%110 Blue Yellow
%111 Black White

Other colours are not available but can of course be simulated by dithering or multiplexing across multiple pixels or frames, eg.:

black + white = grey
red + white = pink
red + yellow = orange
black + yellow = dark yellow
black + yellow + red = brown

Colour artefacting also occurs on the real machine (even in PAL). This is especially noticeable for eg. Robot Killer walls and Parashooter player sprite.

There are two colour modes, selected by the high bit (bit 7) of PITCH ($18FD). Mode 0 allows four character colours over one background colour. Mode 1 ("board mode") allows two character colours over two background colours.

In mode 0 (non-board mode):

bits 5..4 of BGCOLOUR are unused.
bit  3    of BGCOLOUR chooses foreground colour set (see table below).
bits 0..2 of BGCOLOUR are background colour (in standard format).
bits 5..0 of GFXMODE  are unused.

In this mode, foreground colours are:

Screen contents (with Flag off) Screen contents (with Flag on)
$00..$3F $40..$7F $80..$BF $C0..$FF $00..$3F $40..$7F $80..$BF $C0..$FF
BGCOLOUR of %x,x,xx0,xxx White Cyan Purple Blue Black Red Green Yellow
BGCOLOUR of %x,x,xx1,xxx Yellow Green Red Black Blue Purple Cyan White

In mode 1 (board mode):

bits 5..3 of BGCOLOUR are 2nd   foreground colour (in standard format).
bits 0..2 of BGCOLOUR are outer background colour (in standard format).
bits 5..3 of GFXMODE  are 1st   foreground colour (in standard format).
bits 0..2 of GFXMODE  are inner background colour (in standard format).

In this mode, foreground and background colours are:

Screen contents of
$00..$3F $40..$7F $80..$BF $C0..$FF
Foreground colour 1st 2nd 1st 2nd
Background colour Inner Outer

In this mode, the screen is filled with the inner background colour, but is surrounded by a border filled with the outer background colour (although of course if the inner and outer background colours are the same the border will not be apparent). The two background and two foreground colours can all be chosen and used freely. Bit 7 of each character specify whether to use the inner (%0) or outer (%1) background colour for the background (off bits in the image definition). Bit 6 of each character specify whether to use the 1st (%0) or 2nd (%1) foreground colour for the foreground (on bits in the image definition).

Block graphics mode can be set by a $C0 at the start of a line, and terminated by a $40 at the start of a line, or controlled by the high bit (bit 7) of GFXMODE ($19F8). The format is:

    22211100
    22211100
    22211100
    22211100
    55544433
    55544433
    55544433
    55544433

where each digit is the bit position corresponding with that pixel. Bits 7..6 are the colour, as normal. Examples:

    %xx000001   %xx000010   %xx000011   %xx000100   %xx000101   %xx000110
    ......##    ...###..    ...#####    ###.....    ###...##    ######..
    ......##    ...###..    ...#####    ###.....    ###...##    ######..
    ......##    ...###..    ...#####    ###.....    ###...##    ######..
    ......##    ...###..    ...#####    ###.....    ###...##    ######..
    ........    ........    ........    ........    ........    ........
    ........    ........    ........    ........    ........    ........
    ........    ........    ........    ........    ........    ........
    ........    ........    ........    ........    ........    ........

Character vs. block mode, and mode 0 vs. mode 1, are separate issues, and thus the modes can be freely combined.
If you want low-res mode, you should set:

    GFXMODE  as %x,0,xxx,xxx
and BGCOLOUR as %0,x,xxx,xxx

If you want hi-res mode, you should set:

    GFXMODE  as %x,1,xxx,xxx
and BGCOLOUR as %1,x,xxx,xxx

Although it is possible to set them independently, it is generally pointless. The exception would be if you wanted low-resolution mode but did want the $1A00..$1ACF region drawn, and were using VSCROLL to vertically scroll the screen to reveal that area.

VSCROLL ($18FC) is "the complement of the number of lines from the trailing edge of vertical drive to start character display". In other words, you use this register to vertically scroll the entire display. All 8 bits of the register are used for this. Higher values indicate positions towards the top of the screen, lower values indicate positions towards the bottom of the screen (as for sprites).
$FF pushes the display to the top of the screen.
$ED seems to be used by most games.
$DF is the lowest which will show the entire display under MESS V2.

CHARLINE ($18FF) is a read-only hardware register.
Bits 7..4 are apparently unused? (these bits are always set?)
Bits 3..0 indicate the current character line (row) being rendered:

    0..12      = which line
       13 ($D) = end of DMA (ie. start of vertical blank)
       14 ($E) = unused?
       15 ($F) = beginning of DMA (ie. end of vertical blank)

Note that BGCOLOUR appears to be latched during the entire $F0..$FC CHARLINE period; writes to it (to eg. change the background colour) do not take immediate effect. (However, you can switch black/white (eg. 3D Bowling), red/cyan, green/purple (eg. Ocean Battle) or blue/yellow (eg. Dr. Slump, Horse Racing, Pleiades) at any time by toggling the flag pin.) Therefore, blue water with black road in Frogger is not actually possible.

The horizontal resolution is 128 pixels; 16 tiles per row. The vertical resolution is either 104 (13 tiles per column) or 208 (26 tiles per column) pixels tall, Each tile is 8x8 in size. Graphics are character- based (ie. tile-based), not bitmapped. The screen is organized as a 16*13 or 16*26 grid of tiles, one byte per tile. There are also four freely positionable monochrome sprites. You can offset the display horizontally on a per-row (8 rasters) basis and vertically on a per-frame basis.

The "upper screen" is stored from $1800..$18CF; the top row is $1800.. $1810, the 2nd row is $1810..$181F, etc., to the 13th row from $18C0.. $18CF. In low-resolution mode this is all that is used. However, in high- resolution mode, the 13 rows of the "lower screen", stored from $1A00.. $1ACF, are also shown. These 208 "lower screen" bytes are available for use as extra RAM in low-resolution mode.

There are 64 characters In the character set. In non-block mode, these consist of 56 PDGs and 8 UDGs:

Decimal Hex Description
0 $00 built-in empty space (' ')
1..2 $01..$02 built-in diagonal lines ('/', '\')
3 $03 built-in solid ('■')
4..7 $04..$07 built-in side lines
8..11 $08..$0B built-in corners ('┐', '┌', '└', '┘')
12..15 $0C..$0F built-in right-angled triangles ('◢', '◣', '◤', '◥')
16..25 $10..$19 built-in numbers 0..9
26..51 $1A..$33 built-in uppercase letters A..Z
52..55 $34..$37 built-in punctuation ('.', ',', '+', '$')
56..59 $38..$3B sprites #0..#3
60..63 $3C..$3F user defined graphics #0..#3

    $0123456789ABCDEF
     -----------------
$00:  /\#il_jwqasrtgf    $00           : space
$10: 0123456789ABCDEF    $01-$0F       : graphics characters
$20: GHIJKLMNOPQRSTUV    $38-$3B (zxcv): sprites 0-3
$30: WXYZ.,+$zxcvbnmh    $3C-$3F (bnmh): user defined graphics 0-3

$00 ( ): ........ $01 (/): .......# $02 (\): #....... $03 (#): ########
         ........          ......#.          .#......          ########
         ........          .....#..          ..#.....          ########
         ........          ....#...          ...#....          ########
         ........          ...#....          ....#...          ########
         ........          ..#.....          .....#..          ########
         ........          .#......          ......#.          ########
         ........          #.......          .......#          ########

$04 (i): ######## $05 (l): ......## $06 (_): ........ $07 (j): ##......
         ########          ......##          ........          ##......
         ........          ......##          ........          ##......
         ........          ......##          ........          ##......
         ........          ......##          ........          ##......
         ........          ......##          ........          ##......
         ........          ......##          ########          ##......
         ........          ......##          ########          ##......

$08 (w): ######## $09 (q): ######## $0A (a): ##...... $0B (s): ......##
         ########          ########          ##......          ......##
         ......##          ##......          ##......          ......##
         ......##          ##......          ##......          ......##
         ......##          ##......          ##......          ......##
         ......##          ##......          ##......          ......##
         ......##          ##......          ########          ########
         ......##          ##......          ########          ########

$0C (r): .......# $0D (t): #....... $0E (g): ######## $0F (f): ########
         ......##          ##......          #######.          .#######
         .....###          ###.....          ######..          ..######
         ....####          ####....          #####...          ...#####
         ...#####          #####...          ####....          ....####
         ..######          ######..          ###.....          .....###
         .#######          #######.          ##......          ......##
         ########          ########          #.......          .......#

These occupy the low 6 bits (bits 5..0) of the byte. The upper 2 bits (bits 7..6) are used for the foreground colour, as previously described. Block mode is no different, except that a different set of image definitions is used (as previously described), and these occupy all characters 0..63; therefore sprite and UDG imagery cannot be used in block mode.

Strictly speaking there are eight UDGs (User Defined Graphics), but the first four of them always have the same imagery as the four sprites.
The sprite UDGs (imagery at $1980..$199F) are characters $38..$3B/$78..$7B/$B8..$BB/$F8..$FB. The sprite colours, as stored in SPRnnCTRL, have no influence on the colours of these when used as UDGs (only when used as actual sprites); the colours used will be determined in the same way as for any other tile.
The four dedicated UDGs (imagery $19A0..$19BF) are characters $3C..$3F/$7C..$7F/$BC..$BF/$FC..$FF, and are not usable as sprites.

Most consoles implement the Flag line (bit 7 of the PSU): while this is set, all colours are inverted. This even applies to sprites. The Tempest MPT-03 (and presumably all other MPT-03s) and Australian Emerson Arcadia 2001, for example, definitely do implement this. However, some consoles, such as the American Emerson Arcadia 2001, do not implement this and therefore the colours will never be inverted on such machines.

The Sense pin (bit 6 of the PSU) is read-only. It is set (to 1) as described elsewhere, to signify that the vertical retrace interval has begun, and cleared (to 0) to signify that the interval has ended.

Only 84 bytes are assigned for use exclusively as user RAM. There is a 32- byte block from $18D0..$18EF, a 4-byte block from $18F8..$18FB, and a 48- byte block from $1AD0..$1AFF. However, as the screen memory can be read and written to it is also possible to use that for storage; eg. in low- resolution the lower screen memory at $1A00..$1ACF will not be displayed and there is no reason in that case not to use it as 208 bytes of extra RAM, increasing the total available to 292 bytes.

There are 4 sprites, each measuring 8*8 pixels. Their colours and position are independent of the underlying character display. Similar to the way the character display can be vertically "squashed" or "stretched" with bit 7 of BGCOLOUR, each sprite can be vertically "squashed" or "stretched" independently of the character display and the other sprites (using bit 7 or 6 of SPRITESnnCTRL).

The foreground colour (1 bits in the image definition) of a sprite is chosen with bits 5..3 or 2..0 of SPRITESnnCTRL; all of the 8 colours are available. The background of a sprite (0 bits in the image definition) is transparent and thus never drawn (and not collision-checked either).

The coordinates of each sprite are relative to the bottom-left corner of the screen. That is to say, lower Y-coordinates are near the bottom of the screen, and higher Y-coordinates are near the top of the screen. Lower X- coordinates are near the left of the screen, and higher X-coordinates are near the right of the screen.

$18F0: SPRITE0Y
$18F1: SPRITE0X
$18F2: SPRITE1Y
$18F3: SPRITE1X
$18F4: SPRITE2Y
$18F5: SPRITE2X
$18F6: SPRITE3Y
$18F7: SPRITE3X (all read/write)
The horizontal and vertical coordinates of the four sprites will be accessed by the UVI at DMA 15.

$18FC: VSCROLL (read/write)
The vertical offset will be accessed by the UVI at DMA 15.

$18FF: CHARLINE: Row status - last DMA number (4 bits) (read-only)
The status can be accessed anytime in the field when the microprocessor is not paused.
The sequence in 13-row mode is (from start to end of frame):
$FF, $F0, $F1, $F2, $F3, $F4, $F5, $F6, $F7, $F8, $F9, $FA, $FB, $FC, $FD, $FF
The sequence in 26-row mode is (from start to end of frame):
$FF, $F0, $F1, $F2, $F3, $F4, $F5, $F6, $F7, $F8, $F9, $FA, $FB, $FC, $F0, $F1, $F2, $F3, $F4, $F5, $F6, $F7, $F8, $F9, $FA, $FB, $FC, $FD, $FF

$19FA: SPRITES23CTRL (8 bits) (write-only)
Bit 7 : sprite #2 height (0=tall, 1=short)
Bit 6 : sprite #3 height (0=tall, 1=short)
Bits 5..3: sprite #2 colours
Bits 2..0: sprite #3 colours

$19FB: SPRITES01CTRL (8 bits) (write-only)
Bit 7 : sprite #0 height (0=tall, 1=short)
Bit 6 : sprite #1 height (0=tall, 1=short)
Bits 5..3: sprite #0 colours
Bits 2..0: sprite #1 colours

$19FC: BGCOLLIDE: Sprite collision with characters (4 bits) (read-once)
Bits 7..4: always %1111
Bit 3: sprite #3 collision with any character (%0=hit, %1=miss)
Bit 2: sprite #2 collision with any character (%0=hit, %1=miss)
Bit 1: sprite #1 collision with any character (%0=hit, %1=miss)
Bit 0: sprite #0 collision with any character (%0=hit, %1=miss)

It should be read during the vertical reset period.
The bits are reset (to 0) on collision and set (to 1) by reading or the trailing edge of VRST.
Each bit is set to 1 when the AND of the appropriate sprite and background videos is high. Each bit is reset to 0 when accessed or at the end of the vertical blanking period.
Waiting until CHARLINE is $FD or $FF does not seem to work reliably on the real machine. It seems necessary to wait for the Sense bit (like eg. Combat does).

$19FD: SPRITECOLLIDE: Inter-sprite collision (6 bits) (read-once)
Bits 7..6: always %11
Bit 5: sprites #2/#3 collision (%0=hit, %1=miss)
Bit 4: sprites #1/#3 collision (%0=hit, %1=miss)
Bit 3: sprites #1/#2 collision (%0=hit, %1=miss)
Bit 2: sprites #0/#3 collision (%0=hit, %1=miss)
Bit 1: sprites #0/#2 collision (%0=hit, %1=miss)
Bit 0: sprites #0/#1 collision (%0=hit, %1=miss)

It should be read during the vertical reset period.
The bits are reset (to 0) on collision and set (to 1) by reading or the trailing edge of VRST.
Each bit is set to 0 when the AND of the appropriate two sprite videos is high. Each bit is reset to 1 when accessed or at the end of the vertical blanking period.

Sound

This section also applies to Interton and Elektor, not just Arcadia.

Here are the optimal PITCH register values for harmonic melodies:

PITCH Actual NTSC Actual PAL Ideal NTSC Ideal PAL
$FF30.7578130.5176b0?
$FE30.8784330.6373B0 (30.868 Hz)?
$FD31.0000030.7579b0?
$FC31.1225330.8794b0B0 (30.868 Hz)
$FB31.2460331.0020b0?
$FA31.3705231.1255b0?
$F931.4960031.2500b0?
$F831.6224931.3755b0?
$F731.7500031.5020c1?
$F631.8785431.6296c1?
$F532.0081331.7581c1?
$F432.1387731.8878c1?
$F332.2704932.0184c1?
$F232.4032932.1502c1?
$F132.5371932.2831c1?
$F032.6722032.4170C1 (32.703 Hz)?
$EF32.8083332.5521c1?
$EE32.9456132.6883c1C1 (32.703 Hz)
$ED33.0840332.8256c1?
$EC33.2236332.9641c1?
$EB33.3644133.1038c1?
$EA33.5063833.2447c1?
$E933.6495733.3868c#1/d♭1?
$E833.7939933.5300c#1/d♭1?
$E733.9396633.6746c#1/d♭1?
$E634.0865833.8203c#1/d♭1?
$E534.2347833.9674c#1/d♭1?
$E434.3842834.1157c#1/d♭1?
$E334.5350934.2654c#1/d♭1?
$E234.6872334.4163C#1/D♭1 (34.648 Hz)?
$E134.8407134.5686c#1/d♭1?
$E034.9955634.7222c#1/d♭1C#1 (34.648 Hz)
$DF35.1517934.8772c#1/d♭1?
$DE35.3094235.0336c#1/d♭1?
$DD35.4684735.1914c#1/d♭1?
$DC35.6289635.3507d1?
$DB35.7909135.5114d1?
$DA35.9543435.6735d1?
$D936.1192735.8372d1?
$D836.2857136.0023d1?
$D736.4537036.1690d1?
$D636.6232636.3372D1 (36.708 Hz)?
$D536.7943936.5070d1?
$D436.9671436.6784d1D1 (36.708 Hz)
$D337.1415136.8514d1?
$D237.3175437.0261d1?
$D137.4952437.2024d1?
$D037.6746437.3804d1?
$CF37.8557737.5601d#1/e♭1?
$CE38.0386537.7415d#1/e♭1?
$CD38.2233037.9248d#1/e♭1?
$CC38.4097638.1098d#1/e♭1?
$CB38.5980438.2966d#1/e♭1?
$CA38.7881838.4852d#1/e♭1?
$C938.9802038.6757D#1/e♭1 (38.891 Hz)?
$C839.1741338.8682d#1/e♭1D#1/E♭1 (38.891 Hz)
$C739.3700039.0625d#1/e♭1?
$C639.5678439.2588d#1/e♭1?
$C539.7676839.4571d#1/e♭1?
$C439.9695439.6574d#1/e♭1?
$C340.1734739.8597e1?
$C240.3794940.0641e1?
$C140.5876340.2706e1?
$C040.7979340.4793e1?
$BF41.0104240.6901e1?
$BE41.2251340.9031E1 (41.203 Hz)?
$BD41.4421041.1184e1E1 (41.203 Hz)
$BC41.6613841.3360e1?
$BB41.8829841.5559e1?
$BA42.1069541.7781e1?
$B942.3333342.0027e1?
$B842.5621642.2297f1?
$B742.7934842.4592f1?
$B643.0273242.6913f1?
$B543.2637442.9258f1?
$B443.5027643.1630f1?
$B343.7444543.4028F1 (43.654 Hz)?
$B243.9888343.6453f1F1 (43.654 Hz)
$B144.2359543.8904f1?
$B044.4858744.1384f1?
$AF44.7386444.3892f1?
$AE44.9942944.6429f1?
$AD45.2528744.8994f#1/g♭1?
$AC45.5144545.1590f#1/g♭1?
$AB45.7790745.4215f#1/g♭1?
$AA46.0467845.6871f#1/g♭1?
$A946.3176545.9559F#1/G♭1 (46.249 Hz)?
$A846.5917246.2278f#1/g♭1F#1/G♭1 (46.249 Hz)
$A746.8690546.5030f#1/g♭1?
$A647.1497046.7814f#1/g♭1?
$A547.4337347.0633f#1/g♭1?
$A447.7212147.3485f#1/g♭1?
$A348.0122047.6372g1?
$A248.3067547.9294g1?
$A148.6049448.2253g1?
$A048.9068348.5248G1 (48.999 Hz)?
$9F49.2125048.8281g1?
$9E49.5220149.1352g1G1 (48.999 Hz)
$9D49.8354449.4462g1?
$9C50.1528749.7611g1?
$9B50.4743650.0801g1?
$9A50.8000050.4032g#1/a♭1?
$9951.1298750.7305g#1/a♭1?
$9851.4640551.0621g#1/a♭1?
$9751.8026351.3980G#1/A♭1 (51.913 Hz)?
$9652.1456951.7384g#1/a♭1?
$9552.4933352.0833g#1/a♭1G#1/A♭1 (51.913 Hz)
$9452.8456452.4329g#1/a♭1?
$9353.2027052.7872g#1/a♭1?
$9253.5646253.1463a1?
$9153.9315153.5103a1?
$9054.3034553.8793a1?
$8F54.6805654.2535a1?
$8E55.0629454.6329A1 (55.000 Hz)?
$8D55.4507055.0176a1A1 (55.000 Hz)
$8C55.8439755.4078a1?
$8B56.2428655.8036a1?
$8A56.6474856.2050a1?
$8957.0579756.6123a#1/b♭1?
$8857.4744557.0255a#1/b♭1?
$8757.8970657.4449a#1/b♭1?
$8658.3259357.8704A#1/B♭1 (58.270 Hz)?
$8558.7611958.3022a#1/b♭1A#1/B♭1 (58.270 Hz)
$8459.2030158.7406a#1/b♭1?
$8359.6515259.1856a#1/b♭1?
$8260.1068759.6374a#1/b♭1?
$8160.5692360.0962a#1/b♭1?
$8061.0387660.5620b1?
$7F61.5261.0352B1 (61.735 Hz)b1
$7E62.0061.5157b1B1 (61.735 Hz)
$7D62.4962.0040b1b1
$7C62.9962.5000b1b1
$7B63.5063.0040b1b1
$7A64.0263.5163c2c2
$7964.5464.0369c2c2
$7865.0764.5661c2c2
$7765.6265.1042C2 (65.406 Hz)c2
$7666.1765.6513c2C2 (65.406 Hz)
$7566.7366.2076c2?
$7467.3066.7735c2?
$7367.8867.3491c#2/d♭2?
$7268.4767.9348c#2/d♭2?
$7169.0768.5307c#2/d♭2?
$7069.6869.1372C#2/D♭2 (69.296 Hz)C#2/D♭2 (69.296 Hz)
$6F70.3069.7545c#2/d♭2?
$6E70.9470.3829c#2/d♭2?
$6D71.5871.0227d2?
$6C72.2471.6743d2?
$6B72.9172.3380D2 (73.416 Hz)?
$6A73.5973.0140d2?
$6974.2873.7028d2D2 (73.416 Hz)
$6874.9974.4048d2?
$6775.7175.1202d2?
$6676.4575.8495d#2/e♭2?
$6577.2076.5931d#2/e♭2?
$6477.9677.3515D#2/E♭2 (77.782 Hz)D#2/E♭2 (77.782 Hz)
$6378.7478.1250d#2/e♭2?
$6279.5478.9141d#2/e♭2?
$6180.3579.7194e2?
$6081.1880.5412e2?
$5F82.0281.3802E2 (82.407 Hz)?
$5E82.8882.2368e2E2 (82.407 Hz)
$5D83.7783.1117e2?
$5C84.6784.0054e2?
$5B85.5984.9185f2?
$5A86.5385.8516f2?
$5987.4986.8056F2 (87.307 Hz)?
$5888.4787.7809f2F2 (87.307 Hz)
$5789.4888.7784f2?
$5690.5189.7989f#2?
$5591.5690.8430f#2?
$5492.6491.9118F#2/G♭2 (92.499 Hz)?
$5393.7493.0060f#2F#2/G♭2 (92.499 Hz)
$5294.8794.1265g2?
$5196.0295.2744g2?
$5097.2196.4506g2?
$4F98.4297.6563G2 (97.999 Hz)G2 (97.999 Hz)
$4E99.6798.8924g2?
$4D100.95100.160g#2/a♭2?
$4C102.26101.461g#2/a♭2?
$4B103.61102.796G#2/A♭2 (103.826 Hz)?
$4A104.99104.167g#2/a♭2G#2/A♭2 (103.826 Hz)
$49106.41105.574g#2/a♭2?
$48107.86107.021a2?
$47109.36108.507a2?
$46110.90110.035A2 (110.000 Hz)A2 (110.000 Hz)
$45112.49111.607a2?
$44114.12113.225a#2/b♭2?
$43115.79114.890a#2/b♭2?
$42117.52116.604A#2/B♭2 (116.541 Hz)A#2/B♭2 (116.541 Hz)
$41119.30118.371a#2/b♭2?
$40121.14120.192a#2/b♭2?
$3F123.03122.070B2 (123.471 Hz)B2 (123.471 Hz)
$3E124.98124.008b2?
$3D127.00126.008c3?
$3C129.08128.074c3?
$3B131.23130.208C3 (130.813 Hz)C3 (130.813 Hz)
$3A133.46132.415c#3-
$39135.76134.698c#3-
$38138.14137.061C#3/D♭3 (138.591 Hz)?
$37140.61139.509c#3C#3/D♭3 (138.591 Hz)
$36143.16142.045d3?
$35145.81144.676D3 (146.832 Hz)?
$34148.57147.406d3D3 (146.832 Hz)
$33151.42150.240d3?
$32154.39153.186d#3/e♭3?
$31157.48156.250D#3/E♭3 (155.563 Hz)
$30160.69159.439d#3/e♭3?
$2F164.04162.760E3 (164.814 Hz)?
$2E167.53166.223e3E3 (164.814 Hz)
$2D171.17169.837f3?
$2C174.98173.611F3 (174.614 Hz)
$2B178.95177.557f3?
$2A183.12181.686F#3/G♭3 (184.997 Hz)?
$29187.48186.012f#3/g♭3F#3/G♭3 (184.997 Hz)
$28192.05190.549g3?
$27196.85195.313G3 (195.998 Hz)
$26201.90200.321g3?
$25207.21205.592G#3/A♭3 (207.652 Hz)
$24212.81211.149g#3/a♭3?
$23218.72217.014A3 (220.000 Hz)
$22224.97223.214a3?
$21231.59229.779A#3/B♭3 (233.082 Hz)
$20238.61236.742a#3/b♭3?
$1F246.06244.141B3 (246.942 Hz)
$1E254.00252.016b3?
$1D262.47260.417C4 (261.626 Hz)
$1C271.52269.397c#4/d♭4?
$1B281.21279.018C#4/D♭4 (277.183 Hz)
$1A291.63289.352D4 (293.665 Hz)
$19302.84300.481d4?
$18314.96312.500D#4/E♭4 (311.127 Hz)
$17328.08325.521E4 (329.628 Hz)
$16342.35339.674f4?
$15357.91355.114F4 (349.228 Hz)
$14374.95372.024F#4/G♭4 (369.994 Hz)
$13393.70390.625G4 (391.995 Hz)
$12414.42411.184G#4/A♭4 (415.305 Hz)
$11437.44434.028A4 (440.000 Hz)
$10463.18459.559A#4/B♭4 (466.164 Hz)
$0F492.12488.281B4 (493.883 Hz)
$0E524.93520.833C5 (523.251 Hz)
$0D562.43558.036C#5/D♭5 (554.365 Hz)
D5 (587.33 Hz)
$0C605.69600.962D#5 (622.254 Hz)D5 (587.33 Hz)
$0B656.17651.042E5 (659.255 Hz)
$0A715.82710.227F5 (698.456 Hz)
F#5/G♭5 (739.99 Hz)
$09787.40781.250G5 (783.991)
G#5/A♭5 (830.61 Hz)
$08874.89868.056A5 (880.000 Hz)
A#5/B♭5 (932.30 Hz)
$07984.25976.562B5 (987.767 Hz)
C6 (1046.50 Hz)
$061124.861116.071C#6/D♭6 (1108.731 Hz)
D6 (1174.70 Hz)
D#6/E♭6 (1244.50 Hz)
$051312.331302.083E6 (1318.510 Hz)
F6 (1396.90 Hz)
F#6/G♭6 (1480.00 Hz)
$041574.801562.500G6 (1567.982 Hz)
G#6/A♭6 (1661.20 Hz)
A6 (1760.00 Hz)
A#6/B♭6 (1864.66 Hz)
$031968.501953.125B6 (1975.53 Hz)
C7 (2093.00 Hz)
C#7/D♭7 (2217.46 Hz)
D7 (2349.32 Hz)
D#7/E♭7 (2489.02 Hz)
$022624.672604.167E7 (2637.02 Hz)
F7 (2793.83 Hz)
F#7/G♭7 (2959.96 Hz)
G7 (3135.96 Hz)
G#7/A♭7 (3322.44 Hz)
A7 (3520.00 Hz)
A#7/B♭7 (3729.31 Hz)
$013937.003906.250B7 (3951.07 Hz)
$00Rest

This should assist in illustrating why tones are off-key.
High-pitched notes (3..1) cause aliasing effects.
Arcadia can only play notes $00..$7F (shown in green). Interton and Elektor can play all notes $00..$FF (shown in yellow and green). Note that as all Intertons and Elektors are PAL, the NTSC information for $80..$FF is only of theoretical interest.

For Arcadia, the algorithm for tone generation is:

frequency = 7874  ÷ ((PITCH & %01111111) + 1); (NTSC)
frequency = 7812½ ÷ ((PITCH & %01111111) + 1); (PAL )
frequency =    2  * ((PITCH & %01111111) + 1) * horizontal line period;

For Interton/Elektor, the algorithm for tone generation is:

frequency = 7874  ÷ ( PITCH              + 1); (NTSC)
frequency = 7812½ ÷ ( PITCH              + 1); (PAL )
frequency =    2  * ( PITCH              + 1) * horizontal line period;

so for NTSC $01, at 3937 Hz:

1÷3937      = 2 * (1 + 1) * horizontal line period
0.000254    =           4 * horizontal line period
0.0000635   =               horizontal line period

and for NTSC $02, at ~2624 Hz:

1÷2624      = 2 * (2 + 1) * horizontal line period
0.000381    =           6 * horizontal line period
0.0000635   =               horizontal line period

and for PAL $01, at 3906.250 Hz:

1÷3906.25   = 2 * (1 + 1) * horizontal line period
0.000256    =           4 * horizontal line period
0.000064    =               horizontal line period

Thus, horizontal line period is 63.5 µS (NTSC) or 64 µS (PAL).

The table below is similar to the table above, but is laid out as a piano-style keyboard (with unusable keys omitted):

Low Notes
Note B0 C1 C#1
D♭1
D1 D#1
E♭1
E1 F1 F#1
G♭1
G1 G#1
A♭1
A1 A#1
B♭1
B1 C2 C#2
D♭2
D2 D#2
E♭2
E2 F2 F#2
G♭2
G2 G#2
A♭2
A2 A#2
B♭2
B2 C3 C#3
D♭3
D3 D#3
E♭3
E3 F3 F#3
G♭3
NTSC PITCH FE F0 E2 D6 C9 BE B3 A9 A0 97 8E 86 7F 77 70 6D 64 5F 59 54 4F 4B 46 42 3F 3B 38 35 31 2F 2C 2A
PAL PITCH FC EE E0 D4 C8 BD B2 A8 9E 95 8D 85 7E 76 70 69 64 5E 58 53 4F 4A 46 42 3F 3B 37 34 31 2E 2C 29
High Notes
Note G3 G#3
A♭3
A3 A#3
B♭3
B3 C4 C#4
D♭4
D4 D#4
E♭4
E4 F4 F#4
G♭4
G4 G#4
A♭4
A4 A#4
B♭4
B4 C5 C#5
D♭5
D5 D#5
E♭5
E5 F5 G5 A5 B5 C#6
D♭6
E6 G6 B6 E7 B7
NTSC PITCH 27 25 23 21 1F 1D 1B 1A 18 17 15 14 13 12 11 10 0F 0E 0D - 0C 0B 0A 09 08 07 06 05 04 03 02 01
PAL PITCH 27 25 23 21 1F 1D 1B 1A 18 17 15 14 13 12 11 10 0F 0E 0D 0C - 0B 0A 09 08 07 06 05 04 03 02 01

The noise generator works much like the tone generator. As with the tone generator, it only ever generates square waves (ie. the speaker is only ever at maximum plus or maximum minus (here designated as +127 and -128 for convenience), not any intermediate values). However, whereas the tone generator flips from +127 to -127 and vice versa at regular, predictable intervals, the noise generator only flips, on average, on half of those occasions; the rest of the time, the output value is held steady.
Or, to put it a different way, the difference is that whenever the tone generator would flip the amplitude (eg. change from -127 to +127 or vice versa), the amplitude will be randomly chosen to be -127 or +127.
Eg. if you set a noise of $40, this is equivalent to 121.1385Hz. So, approximately every 121th of a second, the following pseudocode would be executed:

    if ((rand() % 2) == 0) value = 127; else value = -127;

So, whereas a tone waveform might look like this:

       _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _
    | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
    | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
    | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
    |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |

a noise waveform of the same frequency might look like this:

       ___   _   _     ___   _____   _   _     _     ___   _   ___   _
    | |   | | | | |   |   | |     | | | | |   | |   |   | | | |   | | | |
    | |   | | | | |   |   | |     | | | | |   | |   |   | | | |   | | | |
    | |   | | | | |   |   | |     | | | | |   | |   |   | | | |   | | | |
    |_|   |_| |_| |___|   |_|     |_| |_| |___| |___|   |_| |_|   |_| |_|

The higher the pitch (frequency), the more random the noise will sound. Ie. lower values are more regular and rhythmic.

Sample values are (with acknowledgements to Tom Pittman):

$7F = static
$10 = rocket exhaust
$04 = machine gun
$02 = engine racing
$00 = silence

Note that the preceding discussion of the noise hardware also applies to systems such as the Interton VC 4000 and expanded Elektor TVGC.

Arcadia sound is inferior to Interton sound in three ways:

Lowest pitches are not possible on Arcadia;
Only 8 volume levels on Arcadia instead of 16; and
No explosion circuit ("banger").

Timing

Anything in this section that contradicts the information here is probably wrong.

3D Bowling waits for approximately 284 CPU cycles for a scanline?

Circus exhibits different behaviour depending on whether the vertical blanking interval takes <= 621 CPU cycles or not (<= approx. 32 rastlines).
Green background (or purple, if theres is no Flag pin) is when the CPU is slow and the UVI is fast (vblank done in not many CPU cycles) (NTSC),
Black background (or white, if there is no Flag pin) is when the CPU is fast and the UVI is slow (vblank takes a lot of CPU cycles) (PAL).

NTSC vertical blank takes 18.91667 CPU cycles per rastline * 20 rastlines = 378.3' CPU cycles per vblank.
PAL vertical blank takes 18.91667 CPU cycles per rastline * 43 rastlines = 813.41681 CPU cycles per vblank.

This is based on information found in the 2637 UVI manual:

While drawing the top area (ie. VOFFSET area):
DMA is $FF.
UVI and RAM are accessible.
Sense is probably pulled low now.
Sprite coordinates and vertical offset are read now.
UDGs may be changed now.

While drawing main area:
DMA is $F0..$FC.
UVI is inaccessible.
RAM may be locked out.
Sense is pulled low now if it wasn't already.

After drawing main area, now it is drawing the bottom area (ie. rest of VOFFSET area):
DMA is $FD.
UVI is accessible.
Sense is maybe pulled high now.
RAM may be locked out.

Now it is doing 3 more (undisplayed) rasters. During this time the electron beam is actually moving diagonally up the screen in preparation for drawing the next frame (ie. this is the true vertical retrace interval):
UVI and RAM are accessible.
DMA is $FF.
Sense is pulled high now if it wasn't already.
UDGs may be changed now.

To wait for the START of the vertical blank period, the usual method is:

WAITVBLSTART:
;start of loop
    tpsu    $80          ;test bits %10000000 of PSU;
    bcfr,eq WAITVBLSTART ;if != goto WAITVBLSTART;
;end of loop

To wait for the END of the vertical blank period, the usual method is:

WAITVBLEND:
;start of loop
    tpsu    $80          ;test bits %10000000 of PSU;
    bctr,eq WAITVBLEND   ;if == goto WAITVBLEND;
;end of loop

So, BCFR is used when waiting for the START of vertical blank (ie. the END of the display frame), and BCTR is used when waiting for the END of vertical blank (ie. the START of the display frame).

To wait for a specified CHARLINE, the usual method is:

WAITLINE:
;start of loop
    loda,r0 CHARLINE
    andi,r0 $0F
    comi,r0 $03          ;change the operand according to desired line
    bcfr,eq WAITLINE ;end of loop

The example above waits until line 3 (ie. CHARLINE == $F3). Change the operand of the COMI instruction as appropriate for other lines.

Compiler 2001

Here is a dissassembly of sync_example.bin, with corresponding source lines shown.
Note that the raw output of Compiler 2001 is encrypted and requires decrypting into ordinary 2650 code. Also, its output is buggy, as indicated below.

cls:
    EORZ    r0       ;$00
    LODI,r1 $D0      ;$01..$02
cls_1:
    STRA,r0 $17FF,r1 ;$03..$05
    BDRR,r1 CLS_1    ;$06..$07
    EORZ    r0       ;$08 (useless!)
    LODI,r1 $D0      ;$09..$0A
cls_2:
    STRA,r0 $19FF,r1 ;$0B..$0D
    BDRR,r1 CLS_2    ;$0E..$0F

set sound off (actual):           set sound off (corrected):
    LODA,r3 PITCH    ;$10..$12        LODA,r3 VOLUME
    ANDI,r3 $F7      ;$13..$14        ANDI,r3 $F7
                                      STRA,r3 VOLUME

set noise off (actual):           set noise off (corrected):
    LODA,r3 PITCH    ;$15..$17        LODA,r3 VOLUME
    ANDI,r3 $EF      ;$18..$19        ANDI,r3 $10
                                      STRA,r3 VOLUME

set text mode (actual):           set text mode (corrected):
    LODA,r0 GFXMODE  ;$1A..$1C        LODA,r0 GFXMODE
    ANDI,r0 $7F      ;$1D..$1E        ANDI,r0 $7F
    STRA,r0 $1918    ;$1F..$21        STRA,r0 GFXMODE

set hi resolution:
    LODA,r3 BGCOLOUR ;$22..$24
    IORI,r3 $80      ;$25..$26
    STRA,r3 BGCOLOUR ;$27..$29

set vertical scroll n:
    LODI,r3 n        ;$2A..$2B
    STRA,r3 VSCROLL  ;$2C..$2E

set horizontal scroll n:
    LODA,r3 VOLUME   ;$2F..$31
    ANDI,r3 $0F      ;$32..$33
    IORI,r3 n        ;$34..$35
    STRA,r3 VOLUME   ;$36..$38

set extended colour mode off      set extended colour mode off
(actual):                         (corrected):
    LODA,r3 PITCH    ;$39..$3B        LODA,r3 PITCH
    ANDI,r3 $7F      ;$3C..$3D        ANDI,r3 $7F
                                      STRA,r3 PITCH

repeat:
set screen colour green
set screen colour blue
forever
LODA,r3 BGCOLOUR
ANDI,r3 $F8
IORI,r3 green [3]
STRA,r3 BGCOLOUR
LODA,r3 BGCOLOUR
ANDI,r3 $F8
IORI,r3 blue [6]
STRA,r3 BGCOLOUR
BCTA,un repeat

Built-in constants:

WHITE=0
YELLOW=1
CYAN=2
GREEN=3
PURPLE=4
RED=5
BLUE=6
BLACK=7

Label styles:

label code
label
.label

Comment styles:

REM comment
/comment

Endless loop styles:

DO
    body
LOOP
REPEAT
    body
FOREVER

Miscellaneous:

: statement separator (same as in BASIC)
variable=value LODI,r0 value
STRA,r0 variable
constant=value constant EQU value

Statements:

BRANCH address BCTA,un
BRANCH SUB address BSTA,un
RETURN RETC,un
DIM variable AS BYTE|INTEGER ?
CLS ?
SCREEN colour Same as SET SCREEN COLOR colour?
SET SOUND OFF ?
SET NOISE OFF ?
SET TEXT MODE ?
SET HI RESOLUTION ?
SET VERTICAL SCROLL 0..255 ?
SET HORIZONTAL SCROLL 0..7 ?
SET EXTENDED COLOR MODE ON|OFF ?
SET SCREEN COLOR colour Same as SCREEN colour?
SYNC ?
SYNC number DMA line, eg. 1 or 25

Compatibility Notes

Observations from a real Australian PAL Emerson Arcadia 2001:

The Flag line is enabled (so colours can be inverted by games).
Joysticks are purely digital; no analog is possible. They are self-centring.
The plastic tab on the left side of cartridge slot must be snapped off for compatibility with American Emerson Arcadia 2001 cartridges.
The paddles return the following values for their extreme and centred positions:

Left player Right player
$07,$00 $68,$00 $FE,$00 $07,$00 $63..$64,$00 $FE,$00
$07,$70..$71 $68,$70..$71 $FE,$70..$71 $07,$69..$6A $63..$64,$69..$6A $FE,$69..$6A
$07,$FE $68,$FE $FE,$FE $07,$FE $63..$64,$FE $FE,$FE

8 Sprites: It doesn't work on the emulator or the real machine. It needs $7Ds at addresses $E and $12 changed to $7Cs. Failing that, it is dependent on the value of r0.

Circus: It has a black background on a real Australian PAL Emerson Arcadia (means PAL detected; green background means NTSC detected).

Counter, Message: These don't fully initialize the system at startup. You will need to issue a POKE VSCROLL $FF command to be able to see the on-screen text.

Frogger 1.4:: On Ami/WinArcadia 34.32, at least, on NTSC, on level 2, collision detection is bad (empty road killing frog sometimes, snakes taking two lives). It is unknown whether this happens on a real NTSC machine. On a real PAL machine, at least, some movement clicks are inaudible (presumably their duration is too short).

Multiplex:: P1PADDLE is always reading as $FF; presumably it is being read at the wrong moment. (So the sprite constantly moves down and right).

Target 1:: It doesn't work on the emulator or the real machine. He is turning on block mode for some reason; it works if that is changed (change byte $0009 from $BF to $03).

Tester1..3:: See the relevant source code (TESTER?.ASM in the Homebrews Pack) for results.

VScroll:: The range of values that are completely visible on the TV is $CC..$FB.

Definite emulator compatibility issues as at V34.32 (these don't happen on real machine):

Doraemon: There is sometimes a blank line between your head and body when moving down.

Dr. Slump: There is sometimes a flickering horizontal line at the top of the "tea-can" and "tea-can man".

Parashooter, Pleiades: The sound is different.

Possible emulator compatibility issues (not retested on emulator nor real machine recently):

Baseball: There are very occasional graphics/collision problems?

Jungler: Some of your bullets are ineffective?

Parashooter: There are graphics glitches when losing a life?

Space Attack: Enemies glitch sometimes when attacking?

Space Raiders, Space Squadron: These occasionally "drop" frames, especially when the action is busy? Player bullets sometimes pass through aliens (the yellow enemies)? Does it ever happen when we are a reasonable distance from them, and alive? If so, it is an emulator bug.

Interton VC 4000

See also the document here.

Also, parts of the Elektor section are applicable. For sound programming, see here.

There are four different cartridge configurations known:

Region Size 2K ROM/EPROM + 0K RAM 4K ROM/EPROM + 0K RAM 4K ROM + 1K RAM1 6K ROM + 1K RAM2
$0000..$07FF 2K game ROM/EPROM
$0800..$0FFF 2K unused game ROM/EPROM
$1000..$13FF 1K unused cartridge RAM game ROM/EPROM
$1400..$15FF ½K unused mirror of $1000..$11FF
$1600..$17FF ½K mirror of $1E00..$1FFF mirror of $1E00..$1FFF (obscures ½K of game ROM/EPROM)
$1800..$1BFF 1K unused mirror of $1000..$13FF cartridge RAM
$1C00..$1DFF ½K unused mirror of $1400..$15FF mirror of $1800..$19FF
$1E00..$1EFF ¼K I/O area
$1F00..$1FFF ¼K PVI area (see Elektor memory map, except that randomizers are never present)
$2000..$7FFF 24K 3 mirrors of $0000..$1FFF

1Backgammon, Chess 1 and Draughts only.
2Chess 2 only.

Hardware equates/memory map

Note that writes to $1E80..$1EFF affect the NOISE register ($1E80). Reads within this range are handled as shown above. (This applies to both Interton and Elektor.)
Vertical and horizontal grid registers are of course usable as ordinary user RAM by games which do not use the grid (such games do not set the "grid/background enable" flag in BGCOLOUR, or set the grid colour to be the same as the screen (background) colour).
Some addresses are read-once. "The object descriptor areas and background definition range can also be read at all times in the normal way. In the I/O and control section, however, reading data causes that location to be reset to $00." - 2636 PVI datasheet.
The Flag pin of the PSU (in the 2650 CPU) controls the paddle interpolation (ie. whether horizontal or vertical).

The following code fragments relevant to the white-noise generator are given in the "TV Games Computer" book, p. 187:

;"sound off"
;NOISE = 0;
eorz    r0
stra,r0 NOISE

;"sound off"
;NOISE = 0;
lodi,r0 0
stra,r0 NOISE

;"PVI sound on"
;NOISE = 4;
lodi,r0 4
stra,r0 NOISE

;"noise (ie. explosion) on"
;NOISE = $10;
lodi,r0 $10
stra,r0 NOISE

Note that "noise", in the discussion in that chapter, refers to the explosion generator ("banger"), not the white-noise generator.

Interton-family BINs are stored and loaded as follows:

ROM Size On disk In memory ORG
2K $0000..$07FF 1st 2K chunk $0000..$07FF 1st quarter of 1st page $0000
4K $0800..$0FFF 2nd 2K chunk $0000..$07FF 2nd quarter of 1st page $0000
6K $1000..$17FF* 3rd 2K chunk $1000..$15FF* 9th..11th sixteenths of 2nd page $0000

* The last 512 bytes of a 6K ROM ($1600..$17FF) is obscured by the mirror there of $1E00..$1FFF; therefore the usable size is limited to 5½K.
Since games are not able to be any larger you don't need to worry about CPU page issues because you will only be using the first page anyway.

Corrections to some common misconceptions about these machines:

The Interton VC 4000 was supposedly made from 1974 but not sold until 1978. However, the Signetics 2650 CPU was only made from 1975; therefore, the Interton VC 4000 could not have been made from 1974.

There are 16 colours, not 9.

There are no multicoloured sprites. All sprites are single-colour (although the same effect can of course be achieved by superimposing multiple sprites atop one another).

Graphics

3-bit colour codes (eg. as used for background and sprite colours) are:

RGB Bright colour Dark colour
%000 Black #1 Black #2
%001 Blue Dark blue
%010 Green Dark green
%011 Cyan Dark cyan
%100 Red Dark red
%101 Purple (magenta) Dark purple
%110 Yellow Dark yellow
%111 White Grey

Colours 0..7 are fullbrite (FB). Colours 8..15 are halfbrite (HB).

For halfbrite machines:

Background colour is:  8 +  (bits 2..0 of BGCOLOUR    )       (ie. 8..15)
Grid colour is:        8 + ((bits 6..4 of BGCOLOUR    ) >> 4) (ie. 8..15)

For fullbrite machines:

Background colour is:       (bits 2..0 of BGCOLOUR    )       (ie. 0..7)
Grid colour is:            ((bits 6..4 of BGCOLOUR    ) >> 4) (ie. 0..7)

For all machines:

Digit colours are:     7 - ((bits 6..4 of BGCOLOUR    ) >> 4) (ie. 0..7)
Sprite #0 colours are: 7 - ((bits 5..3 of SPR01COLOURS) >> 3) (ie. 0..7)
Sprite #1 colours are: 7 -  (bits 2..0 of SPR01COLOURS)       (ie. 0..7)
Sprite #2 colours are: 7 - ((bits 5..3 of SPR23COLOURS) >> 3) (ie. 0..7)
Sprite #3 colours are: 7 -  (bits 2..0 of SPR23COLOURS)       (ie. 0..7)

The digit colour is always dependent on the grid colour, and vice versa, as shown:

BGCOLOUR Grid (fullbrite) Grid (halfbrite) Digits
%x000xxxx Black #1 Black #2 White
%x001xxxx Blue Dark blue Yellow
%x010xxxx Green Dark green Purple
%x011xxxx Cyan Dark cyan Red
%x100xxxx Red Dark red Cyan
%x101xxxx Purple Dark purple Green
%x110xxxx Yellow Dark yellow Blue
%x111xxxx White Grey Black #1

Some Interton VC 4000 family members, such as the Fountain, apparently use fullbrite mode rather than halfbrite mode.
Elektor TVGC seems to use halfbrite mode for at least some games, eg. Catapult. Fullbrite mode may also perhaps be available.

Each digit is 12*20 pixels.
Digit Y-area is 20..39 and/or 200..219, depending on SCORECTRL.
1st digit X-area is 60.. 71.
2nd digit X-area is 76.. 87.
3rd digit X-area is 92..103 or 108..119, depending on SCORECTRL.
4th digit X-area is 108..119 or 124..135, depending on SCORECTRL.

Table of bits controlling which grid segments are lit:

Addresses (hexadecimal) Row Set
1F80:7 1F80:6 1F80:5 1F80:4 1F80:3 1F80:2 1F80:1 1F80:0 1F81:7 1F81:6 1F81:5 1F81:4 1F81:3 1F81:2 1F81:1 1F81:0 0 (raster 20) 1
1
1F82:7 1F82:6 1F82:5 1F82:4 1F82:3 1F82:2 1F82:1 1F82:0 1F83:7 1F83:6 1F83:5 1F83:4 1F83:3 1F83:2 1F83:1 1F83:0 2 2a
3
4
5
6
7
8
9
10
11 2b
12
13
14
15
16
17
18
19 (raster 39)
: : :
1FA4:7 1FA4:6 1FA4:5 1FA4:4 1FA4:3 1FA4:2 1FA4:1 1FA4:0 1FA5:7 1FA5:6 1FA5:5 1FA5:4 1FA5:3 1FA5:2 1FA5:1 1FA5:0 180 (raster 200) 19
181
1FA6:7 1FA6:6 1FA6:5 1FA6:4 1FA6:3 1FA6:2 1FA6:1 1FA6:0 1FA7:7 1FA7:6 1FA7:5 1FA7:4 1FA7:3 1FA7:2 1FA7:1 1FA7:0 182 20a
183
184
185
186
187
188
189
190
191 20b
192
193
194
195
196
197
198
199 (raster 219)

Table of bits controlling segment widths:

$1FA8:7..6: %00 or %10 = 1x       width for sets  1.. 4 (except where overridden by $1FA8:5..0)
            %01        = 2x       width for sets  1.. 4 (except where overridden by $1FA8:5..0)
            %11        = 4x       width for sets  1.. 4 (except where overridden by $1FA8:5..0)
$1FA8:5:    %0         = 1x/2x/4x width for set   4b    (depending on $1FA8:7..6)
            %1         = 8x       width for set   4b
$1FA8:4:    %0         = 1x/2x/4x width for set   4a    (depending on $1FA8:7..6)
            %1         = 8x       width for set   4a
$1FA8:3:    %0         = 1x/2x/4x width for set   3     (depending on $1FA8:7..6)
            %1         = 8x       width for set   3
$1FA8:2:    %0         = 1x/2x/4x width for set   2b    (depending on $1FA8:7..6)
            %1         = 8x       width for set   2b
$1FA8:1:    %0         = 1x/2x/4x width for set   2a    (depending on $1FA8:7..6)
            %1         = 8x       width for set   2a
$1FA8:0:    %0         = 1x/2x/4x width for set   1     (depending on $1FA8:7..6)
            %1         = 8x       width for set   1
: : :
$1FAC:7..6: %00 or %10 = 1x       width for sets 17..20 (except where overridden by $1FAC:5..0)
            %01        = 2x       width for sets 17..20 (except where overridden by $1FAC:5..0)
            %11        = 4x       width for sets 17..20 (except where overridden by $1FAC:5..0)
$1FAC:5:    %0         = 1x/2x/4x width for set  20b    (depending on $1FAC:7..6)
            %1         = 8x       width for set  20b
$1FAC:4:    %0         = 1x/2x/4x width for set  20a    (depending on $1FAC:7..6)
            %1         = 8x       width for set  20a
$1FAC:3:    %0         = 1x/2x/4x width for set  19     (depending on $1FAC:7..6)
            %1         = 8x       width for set  19
$1FAC:2:    %0         = 1x/2x/4x width for set  18b    (depending on $1FAC:7..6)
            %1         = 8x       width for set  18b
$1FAC:1:    %0         = 1x/2x/4x width for set  18a    (depending on $1FAC:7..6)
            %1         = 8x       width for set  18a
$1FAC:0:    %0         = 1x/2x/4x width for set  17     (depending on $1FAC:7..6)
            %1         = 8x       width for set  17

The top left corner of the grid section is at 81,63 in 2621 USG coordinates or 32,20 in 2636 PVI coordinates.
The PVI datasheet is wrong to imply that the last raster in which imagery is displayable is 251 (p. 6), ie. 252 visible rasters. Experimental results (eg. Elektor Tester1) show that at least 268 rasters are visible (for PAL, of course).

The "Tools|Screen editor" function of the emulator is an easy way to experiment and to create game displays.

SPRITEnAX: "If SPRITEnAX is changed during the time that the corresponding object video is being displayed, the portion of the object not yet displayed will be displaced to the new horizontal position." Ie. it is resampled every pixel (at least whilst the sprite is being displayed).

SPRITEnAY: "The value of SPRITEnAY is 'remembered' at the trailing edge of VRST. Thus, if SPRITEnAY is changed during the active scan, the vertical object position change will not be effective until the next active scan." Ie. it is sampled once per frame (at the end of vertical blank).

SPRITEnBY is when to redraw (reuse) the sprite:

    $FF means   0 rastlines gap
    $00 means   1 rastline  gap
    $01 means   2 rastlines gap
    $02 means   3 rastlines gap
    $FC means 253 rastlines gap
    $FD means "never" (but this register will still be reexamined each rastline?)
    $FE means "never" (but this register will still be reexamined each rastline?)

According to the 2636 PVI datasheet:

    Sprite X = SPRITEAXn + 1 (assuming leftmost clock  is 0)
    Sprite Y = SPRITEAYn + 1 (assuming topmost  raster is 0)

SPRITEAXn of >= 228 is not displayed.
SPRITEAYn of >= 253 is not displayed.

SPRITEAXn is not cached (or is cached during HRST).
SPRITEAYn must be changed by (ie. it is cached at) the end of VRST.
SPRITEBXn is cached during HRST.
SPRITEBY is sampled just prior to displaying the last line of the (original or duplicate) object. That sampling presumably wouldn't affect the last line itself.

"The interrupt generation occurs during the horizontal sync at the end of the last line of the sprite display." - Manfred Schneider.

2636 PVI datasheet example:

SPRITE1AX = 42
SPRITE1AY = 36
SPRITE1BX = 30
SPRITE1BY =  9 (10 line gap)

Sprite #1 ( original) is shown at 42..49, 36.. 45.
Sprite #1 ( 1st dup.) is shown at 30..37, 56.. 65.
Sprite #1 ( 2nd dup.) is shown at 30..37, 76.. 85.
Sprite #1 ( 3rd dup.) is shown at 30..37, 96..105.
Sprite #1 ( 4th dup.) is shown at 30..37,116..125.
Sprite #1 ( 5th dup.) is shown at 30..37,136..145.
Sprite #1 ( 6th dup.) is shown at 30..37,156..165.
Sprite #1 ( 7th dup.) is shown at 30..37,176..185.
Sprite #1 ( 8th dup.) is shown at 30..37,196..205.
Sprite #1 ( 9th dup.) is shown at 30..37,216..225.
Sprite #1 (10th dup.) is shown at 30..37,236..245.

Either 250 or 251 is the last displayable rastline.

SPRITE2AX = 62
SPRITE2AY = 20
SPRITE2BX = 88
SPRITE2BY = 27 (28 line gap)

Sprite #2 ( original) is shown at 62..69, 20.. 29.
Sprite #2 ( 1st dup.) is shown at 88..95, 58.. 67.
Sprite #2 ( 2nd dup.) is shown at 88..95, 96..105.
Sprite #2 ( 3rd dup.) is shown at 88..95,134..143.
Sprite #2 ( 4th dup.) is shown at 88..95,172..181.
Sprite #2 ( 5th dup.) is shown at 88..95,210..219.
Sprite #2 ( 6th dup.) is shown at 88..95,248..250/251?

Compatibility Notes

Resolved questions:

Q. Are mid-sprite changes to SPRITEnAX effective?

A. Tester2 confirms that they are.
"If SPRITEnAX is changed during the time that the corresponding object video is being displayed, the portion of the object not yet displayed will be displaced to the new horizontal position." - PVI manual, p. 5.
"Unlike SPRITEnAX and SPRITEnAY, SPRITEnBX and SPRITEnBY may be changed during the scan and such changes will be effected on the current scan." - PVI manual, p. 5.
The first statement is correct. The second statement should be amended to "Unlike SPRITEnAY, SPRITEnBX and SPRITEnBY may be changed during the scan and such changes will be effected on the current scan."

Q.. How do sprite coordinates relate to eg. grid coordinates?
eg. SPRITEnAX=31,SPRITEnAY=19 is top left of grid (according to 2636 PVI datasheet, p. 5)
or is above and to the left of the top left grid (according to 2636 PVI datasheet, p. 6)

A. SPRITEnAY = $FF aligns the sprite to raster 0
SPRITEnAY = $00 aligns the sprite to raster 1
SPRITEnAY = $01 aligns the sprite to raster 2
etc. This is demonstrated by eg. Interton Blackjack.

Unresolved questions:

exactly what the latching behaviour of the PVI is (eg. exactly how often and at what x,y points in the frame the PVI reads or writes each of its registers);
bus contention (each time the PVI accesses memory the CPU is blocked and enters a wait state if it tries to access memory at the same time);
exact state of the system at startup (values of the memory contents).
mirroring: what actual addresses reads and writes are resolved to;
exactly what happens when the CPU executes each of the undocumented CPU instructions.

Test programs could be written in the future to answer those questions.

Interton VC 4000: assumed behaviour is that the low nybbles of CONSOLE and PnFOOKEYS are set to %1111, the same as is proven to occur on an Elektor TVGC.

Gridlines that are the same colour as the background (ie. invisible) don't register collisions. This seems to be the correct behaviour.

Based on the behaviour of Catapult, Destroyer and Submarine+Racing (all for Elektor), the real PVI probably doesn't involve the digits in collision detection.

ESS-011-7-OmegaLanding and ESS-011-D-Painting seem to expect collisions at the far left (< 9) to not register.

"Unlike SPRITEnAX and SPRITEnAY, SPRITEnBX and SPRITEnBY may be changed during the scan [(frame)] and such changes will be effected on the current scan [(frame)]. SPRITEnBX is sampled during each HRST [(horizontal reset)]. Thus, if SPRITEnBX is changed during the display of a duplicate, a portion of the object will be displaced horizontally. For proper operation, SPRITEnBX should be changed only *after* the 'Object Video Completion' status bit [in BGCOLLIDE] indicates completion of the object. SPRITEnBY is sampled just prior to displaying the last line of the object. To effect a change in the vertical offset to the next duplicate, SPRITEnBY must be changed *before* the 'Object Video Completion' status bit [in BGCOLLIDE] indicates completion of the object." - PVI manual, p. 5. But that is incorrect as Circus relies on being able to change SPRITEnAX so that the balloons are drawn properly.

Munch & Crunch: "I have found a bug in Munch & Crunch which no doubt explains the occasional glitches I have seen. It's in my simplistic return from interrupt:

    loda,r0 STOREPSL
    lpsl
    loda,r0 STORER0
    rete,un

The problem of course is that the condition code in the PSL gets changed by the final load instruction. Having looked at other disassemblies I must say that I'm impressed by how the AND $C0 to a copy of PSL correctly restores the condition code. The condition codes were obviously carefully chosen when designing the processor.
From Blackjack:

    loda,r0 PRESERVEPSL  ;r0 = PRESERVEPSL
    strz    r4           ;r4 = r0;
    lpsl                 ;PSL = r0; restores psl but with bank 1
    loda,r0 PRESERVER0   ;restore r0
    andi,r4 $C0
    cpsl    $10          ;Bank 0
    rete,un

The 2650B with its LDPL and STPL instructions was a big improvement." - Derek Andrews.

Elektor TV Games Computer

Parts of the Interton section are applicable. For sound programming, see here.

These are the components of a basic system:

motherboard
power supply
keyboard
joysticks
speaker
cassette interface
cassette deck
VHF/UHF modulator
TV (television)

There are two versions of the Elektor TV Games Computer: the standard "base" or "basic" version, and the "extended" version. The base and extended versions have 2K and 5K of RAM, respectively. There are also other differences. The Rapid Loading Games (RLG) expansion can be added to the extended version. They use the following memory maps:

Region Size Basic Expanded Expanded + RLG
$0000..$07FF 2K monitor (BIOS) ROM
$0800..$08BF 192 bytes motherboard RAM (for use by monitor):
$08B9..$08BA: interrupt vector
$08BE..$08BF: start address of game
motherboard RAM (used for data for RLG load routine)
$08C0..$0FFF 1856 bytes motherboard RAM (for storage of and use by games)
$1000..$15FF 1½K unused motherboard RAM (for storage of and use by games)
$1600..$17FF ½K mirror of $1E00..$1FFF
$1800..$187F 128 bytes mirror of $1D00..$1D7F
$1880..$189F 32 bytes 8 mirrors of $1D9C..$1D9F (input lines 0..3)
$18A0..$18BF 32 bytes 8 mirrors of $1DBC..$1DBF (input lines 4..7)
$18C0..$18DF 32 bytes 8 mirrors of $1DDC..$1DDF (output lines 0..3)
$18E0..$18FF 32 bytes 8 mirrors of $1DFC..$1DFF (output lines 4..7)
$1900..$197F 128 bytes mirror of $1D00..$1D7F
$1980..$199B 28 bytes 7 mirrors of $1D9C..$1D9F (input lines 0..3)
$199C..$199F 4 bytes mirror of $1D9C..$1D9F (input lines 0..3) if (*($73E) == $19) mirror of $1D9C..$1D9F (obscures 4 bytes of RAM)
if (*($73E) == $1D) motherboard RAM (for storage of and use by games)
$19A0..$19BB 28 bytes 7 mirrors of $1DBC..$1DBF (input lines 4..7) motherboard RAM (for storage of and use by games)
$19BC..$19BF 4 bytes mirror of $1DBC..$1DBF (input lines 4..7) if (*($73E) == $19) mirror of $1DBC..$1DBF (obscures 4 bytes of RAM)
if (*($73E) == $1D) motherboard RAM (for storage of and use by games)
$19C0..$19DF 32 bytes 8 mirrors of $1DDC..$1DDF (output lines 0..3) motherboard RAM (for storage of and use by games)
$19E0..$19FF 32 bytes 8 mirrors of $1DFC..$1DFF (output lines 4..7)
$1A00..$1A7F 128 bytes mirror of $1D00..$1D7F
$1A80..$1A9F 32 bytes 8 mirrors of $1D9C..$1D9F (input lines 0..3)
$1AA0..$1ABF 32 bytes 8 mirrors of $1DBC..$1DBF (input lines 4..7)
$1AC0..$1ADF 32 bytes 8 mirrors of $1DDC..$1DDF (output lines 0..3)
$1AE0..$1AFF 32 bytes 8 mirrors of $1DFC..$1DFF (output lines 4..7)
$1B00..$1B7F 128 bytes mirror of $1D00..$1D7F
$1B80..$1B9F 32 bytes 8 mirrors of $1D9C..$1D9F (input lines 0..3)
$1BA0..$1BBF 32 bytes 8 mirrors of $1DBC..$1DBF (input lines 4..7)
$1BC0..$1BCF 16 bytes 4 mirrors of $1DDC..$1DDF (output lines 0..3)
$1BD0..$1BDF 16 bytes 4 mirrors of $1DDC..$1DDF (output lines 0..3) motherboard RAM (for storage of and use by games) motherboard RAM? (data for/from RLG saver/calculation routines)
$1BE0..$1BFF 32 bytes 8 mirrors of $1DFC..$1DFF (output lines 4..7)
$1C00..$1C1F 32 bytes mirror of $1D00..$1D1F unused EPROM (RLG loader or saver routine)
$1C20..$1C7F 96 bytes mirror of $1D20..$1D7F
$1C80..$1C9F 32 bytes 8 mirrors of $1D9C..$1D9F (input lines 0..3)
$1CA0..$1CBF 32 bytes 8 mirrors of $1DBC..$1DBF (input lines 4..7)
$1CC0..$1CDF 32 bytes 8 mirrors of $1DDC..$1DDF (output lines 0..3)
$1CE0..$1CFF 32 bytes 8 mirrors of $1DFC..$1DFF (output lines 4..7)
$1D00..$1D3F 64 bytes I/O #0 $1D00..$1D0F: I/O #0: 1st PSG (Programmable Sound Generator)
$1D10..$1D1F: I/O #0: 2nd PSG (Programmable Sound Generator)
$1D20: I/O #0: optional random number generator #2
·suggested in English book, p. 161
·suggested in English magazine (Sep 1981), p. 24
·suggested in German book, p. 173
·suggested in German magazine (Sep 1981), p. 49
$1D40..$1D7F 64 bytes I/O #1
$1D80..$1D9B 28 bytes 7 mirrors of $1D9C..$1D9F (input lines 0..3)
$1D9C..$1D9F 4 bytes input lines 0..3
$1DA0..$1DBB 28 bytes 7 mirrors of $1DBC..$1DBF (input lines 4..7)
$1DBC..$1DBF 4 bytes input lines 4..7 (input line 7 ($1DBF) is CASIN)
$1DC0..$1DDB 28 bytes 7 mirrors of $1DDC..$1DDF (output lines 0..3)
$1DDC..$1DDF 4 bytes output lines 0..3
$1DE0..$1DFB 28 bytes 7 mirrors of $1DFC..$1DFF (output lines 4..7)
$1DFC..$1DFF 4 bytes output lines 4..7 (output line 7 ($1DFF) is CASOUT)
$1E00..$1E7F 128 bytes unmapped EPROM (RLG loader or saver routine)
$1E80 1 byte optional Interton-style noise generator
$1E81..$1E87 7 bytes unmapped
$1E88..$1E8E 7 bytes keypads and console
$1E8F..$1E97 8 bytes unmapped
$1E98..$1E9B 4 bytes mirror of $1E88..$1E8B
$1E9C..$1EA7 12 bytes unmapped
$1EA8..$1EAE 7 bytes mirror of $1E88..$1E8E
$1EAF..$1EB7 8 bytes unmapped
$1EB8..$1EBB 4 bytes mirror of $1E88..$1E8B
$1EBC..$1EC7 12 bytes unmapped
$1EC8..$1ECE 7 bytes mirror of $1E88..$1E8E
$1ECF..$1ED7 8 bytes unmapped
$1ED8..$1EDB 4 bytes mirror of $1E88..$1E8B
$1EDC..$1EE7 12 bytes unmapped
$1EE8..$1EEE 7 bytes mirror of $1E88..$1E8E
$1EEF..$1EF7 8 bytes unmapped
$1EF8..$1EFB 4 bytes mirror of $1E88..$1E8B
$1EFC..$1EFF 4 bytes unmapped
$1F00..$1FFF ¼K PVI area:
$1F00..$1F0D 14 bytes Sprite #0 imagery & registers
$1F0E..$1F0F 2 bytes PVI RAM
$1F10..$1F1D 14 bytes Sprite #1 imagery & registers
$1F1E..$1F1F 2 bytes PVI RAM
$1F20..$1F2D 14 bytes Sprite #2 imagery & registers
$1F2E..$1F3F 18 bytes unmapped
$1F40..$1F4D 14 bytes Sprite #3 imagery & registers
$1F4E..$1F6D 32 bytes PVI RAM
$1F6E..$1F7F 18 bytes unmapped
$1F80..$1FAC 44 bytes grid
$1FAD 1 byte PVI RAM
$1FAE..$1FBF 18 bytes unmapped
$1FC0..$1FBF 18 bytes unmapped
$1FC0..$1FC3 4 bytes write-only PVI registers (SIZES, SPR01COLOURS, SPR23COLOURS, SCORECTRL)
$1FC4..$1FC5 2 bytes unmapped
$1FC6..$1FC9 4 bytes write-only PVI registers (BGCOLOUR, PITCH, SCORELT, SCORERT)
$1FCA..$1FCD 4 bytes read-only PVI registers (BGCOLLIDE, SPRITECOLLIDE, P1PADDLE, P2PADDLE)
$1FCE..$1FCF 2 bytes unmapped
$1FD0..$1FEF 32 bytes 2 semi-mirrors of $1FC0..$1FCF
$1FF0..$1FF9 10 bytes semi-mirror of $1FC0..$1FC9
$1FFA 1 byte 1st German randomizer? (RANDOM1G)
$1FFB..$1FFE 4 bytes semi-mirror of $1FCB..$1FCE
$1FFF 1 byte 1st English randomizer? (RANDOM1E)
$2000..$21FF ½K mirror of $0000..$01FF unused EPROM (RLG calculation routine)
$2200..$3FFF 7½K mirror of $0200..$1FFF EPROM (RLG games storage area)
$4000..$5FFF 8K mirror of $0000..$1FFF
$6000..$7FFF 8K mirror of $0000..$1FFF

Hardware equates/memory map (basic TVGC)
Hardware equates/memory map (expanded TVGC)

"$2000..$7FFF: It is not used by any other known hardware extension, but it could be used. In fact in one of the Elektor magazines is a project from them which uses this area. It is called in the German Elektor magazine "Schnelle Spiele", meaning fast games. It was developed by Elektor for computer fairs where they presented the TVGC. They didn't want to load the games from cassette, because this would take too long for loading during the fair. So they decided to build this which loads them out of EPROMs instead from tape. It is connected to the Interton-connector of the extension board and a couple of other wires. The Interton-connector was also modified. They connected address lines A13 and A14 onto pins which they didn't use. The new board then has access to the address ranges $2000..$7FFF and $1C00..$1C7F and $1E00..$1E7F." - Manfred Schneider. For more details about the "rapid loading games" enhancement, see the relevant article in Elektor magazine.

Regarding semi-mirroring (note that this also applies to the Interton): "The 'I/O and control' field is actually repeated four times: $1FC0.. $1FCD, $1FD0..$1FDF, $1FE0..$1FEF, $1FF0..$1FFF. This proves of particular interest for the data stored at addresses $1FCA and $1FCB (collisions, VRLE, etc.). Both of these bytes are cleared when read, which can be a nuisance. However, one reader has pointed out that reading $1FCA, say, only clears this one byte - it does not clear $1FDA, $1FEA or $1FFA! This means that a different address can be used for retrieving data for each object, as required, without affecting the information required later on for one of the other objects. Useful!" - Elektor magazine.

The NOISE generator ($1E80) is optional. The base machine generally does not have it, and the expanded machine generally does. However, many games which are nominally intended for the base machine do access this register; thus, it is included in both memory maps.

For PSG sound, the ENABLEn bits are:

Bits 7..6: unused
Bit  5   : noise C (%1=off, %0=on)
Bit  4   : noise B (%1=off, %0=on)
Bit  3   : noise A (%1=off, %0=on)
Bit  2   : tone  C (%1=off, %0=on)
Bit  1   : tone  B (%1=off, %0=on)
Bit  0   : tone  A (%1=off, %0=on)

Eg. Tiny Tim uses the ENABLEn registers as follows:

ENABLE1:
$FF %11,111,111 no sound
$F8 %11,111,000 all noises off
                all tones on
$FD %11,111,101 all noises off
                tone B is on

ENABLE2:
$3B %00,111,011 while falling
                tone C is on, all other channels are off
$07 %00,000,111 when you hit the ground
                all noises on
                all tones off

See also the "TV Games Computer" book, p. 176-184, 204-205.

The keyboard is laid out as follows (see "TV Games Computer" book, p. 31-32):

$1E8B $1E88 $1E89 $1E8A $1E8C $1E8D $1E8E Key bit
UC RCAS WCAS C D E F bit 7 ($80)
START BP1/2 REG 8 9 A B bit 6 ($40)
LC PC MEM 4 5 6 7 bit 5 ($20)
RESET - + 0 1 2 3 bit 4 ($10)

Eg. the "9" key corresponds to bit 6 of $1E8C. Bits are active high (%0=unpressed, %1=pressed). Bits 3..0 are always set.

Monitor BIOS

Monitor BIOS variables are:

Region Size Label Description
$800..$88F 144 bytes MONOB monitor object images (see diagram below):
$800..$817 24 bytes 1st character row (original sprites)
$818..$82F 24 bytes 2nd character row (1st duplicate sprites)
$830..$847 24 bytes 3rd character row (2nd duplicate sprites)
$848..$85F 24 bytes 4th character row (3rd duplicate sprites)
$860..$877 24 bytes 5th character row (4th duplicate sprites)
$878..$88F 24 bytes 6th character row (5th duplicate sprites)
$890..$897 8 bytes MLINE text line
$898 1 byte FSEQ or SILENC function sequence indicator (BP1/2)
$899 1 byte ENTM +, - ENTER key memory
$89A 1 byte MFUNC monitor function index
$89B..$89C 2 bytes MSCR scratch RAM for keyboard routine
$89D 1 byte RKBST right keyboard status
$89E 1 byte LKBST left keyboard status
$89F 1 byte MKBST monitor keyboard status
$8A0..$8AB 12 bytes FSCRM function scratch memory:
$8A0..$8A1 2 bytes ? ?
$8A2..$8A3 2 bytes SADR start address of write file
$8A4..$8A5 2 bytes BEGA memory begin address
$8A6..$8A7 2 bytes ? ?
$8A8..$8A9 2 bytes ENDA memory end address
$8AA 1 byte BCC check char for read and write
$8AB 1 byte MCNT block byte count for read and write
$8AC..$8B4 9 bytes REGM 2650 register status:
$8AC..$8B2 7 bytes r0..r6 respectively
$8B3 1 byte PSL
$8B4 1 byte PSU
$8B5..$8B6 2 bytes BK1 breakpoint address 1
$8B7..$8B8 2 bytes BK2 breakpoint address 2
$8B9..$8BD 5 bytes INTADR space for startup program
$8BE..$8BF 2 bytes PC 2650 program counter (ie. IAR)

The BIOS character set is:

    0/O     1     2/Z     3      4     5/S     6      7
    $00    $01    $02    $03    $04    $05    $06    $07
    ---    ---    ---    ---    ---    ---    ---    ---
    ###    ..#    ###    ###    #.#    ###    ###    ###
    #.#    .##    ..#    ..#    #.#    #..    #..    ..#
    #.#    ..#    ###    ###    #.#    ###    #..    ..#
    #.#    ..#    #..    ..#    ###    ..#    ###    ..#
    #.#    ..#    #..    ..#    ..#    ..#    #.#    ..#
    ###    ..#    ###    ###    ..#    ###    ###    ..#
    $27B..$280    $281..$286    $287..$28C    $28D..$292

     8      9      A      b      C      d      E      F
    $08    $09    $0A    $0B    $0C    $0D    $0E    $0F
    ---    ---    ---    ---    ---    ---    ---    ---
    ###    ###    ###    #..    ###    ..#    ###    ###
    #.#    #.#    #.#    #..    #..    ..#    #..    #..
    ###    ###    ###    ###    #..    ###    ###    ###
    #.#    ..#    #.#    #.#    #..    #.#    #..    #..
    #.#    ..#    #.#    #.#    #..    #.#    #..    #..
    ###    ###    #.#    ###    ###    ###    ###    #..
    $293..$298    $299..$29E    $29F..$2A4    $2A5..$2AA

     G      L      I      n      P      r      =       +
    $10    $11    $12    $13    $14    $15    $16    $17
    ---    ---    ---    ---    ---    ---    ---    ---
    ###    #..    ###    ...    ###    ...    ...    ...
    #..    #..    .#.    ...    #.#    ...    ...    ...
    #..    #..    .#.    ###    ###    ###    ...    ...
    #..    #..    .#.    #.#    #..    #..    ###    ...
    #.#    #..    .#.    #.#    #..    #..    ...    ...
    ###    ###    ###    #.#    #..    #..    ###    ...
    $2AB..$2B0    $2B1..$2B6    $2B7..$2BC    $2BD..$2C2

     +      -      :      x      ?      _      !      N
    $18    $19    $1A    $1B    $5F    $8A    $A2    $AA
    ---    ---    ---    ---    ---    ---    ---    ---
    .#.    ...    ...    ...    ###    ...    .#.    ...
    .#.    ...    .#.    #.#    ..#    ...    .#.    ###
    ###    ###    ...    .#.    ..#    ...    ...    #.#
    .#.    ...    .#.    #.#    ###    ...    .#.    #.#
    .#.    ...    ...    ...    #..    ...    ...    #.#
    ...    ...    ...    ...    #..    #.#    ...    #.#
    $2C3..$2C8    $2C9..$2CE

     l      T      i      :      .
    $BB    $BC    $DF    $E6    $F7
    ---    ---    ---    ---    ---
    #..    ###    ..#    ##.    ...
    #..    ###    ...    ##.    ...
    #..    .#.    .##    ...    ...
    #..    .#.    ..#    ...    ...
    #..    .#.    ..#    ##.    ...
    #..    .#.    ..#    ##.    .#.

Case-insensitive:
Present: ABCDEFG I  L NOP RST   X Z
Missing:        H JK M   Q   UVW Y
Uppercase:
Present: A C EFG I  L NOP  ST     Z
Missing:  B D   H JK M   QR  UVWXY
Lowercase:
Present:  b d    i  l n   r     x
Missing: a c efgh jk m opq stuvw yz

Character imagery is stored from $27B..$580. $27B..$2CE are intentional, $2CF..$580 are unintentional. It is stored left-justified, two characters per byte (ie. one character per nybble). Each character requires 6 nybbles. Eg. "0" and "1" are stored as follows:

    $27B: $E2    ###. ..#.
    $27C: $A6    #.#. .##.
    $27D: $A2    #.#. ..#.
    $27E: $A2    #.#. ..#.
    $27F: $A2    #.#. ..#.
    $280: $E2    ###. ..#.

and are followed by the "2" and "3" pair at $281..$286, and so on. You can determine the ROM storage area of a character with this formula (assuming integer division; ie. round fractions down):

    startaddress = $27B + ((character ÷ 2) * 6)
    endaddress   = $280 + ((character ÷ 2) * 6)

Therefore, for "?" ($5F = 95):

    startaddress = $27B + (( 95 / 2) * 6)
                 = $27B + (  47      * 6)
                 = $27B +   282
                 = $27B +  $11A
                 = $395

and for "T" ($BC = 188):

    startaddress = $27B + ((188 / 2) * 6)
                 = $27B + (  94      * 6)
                 = $27B +   564
                 = $27B +  $234
                 = $4AF

and for "5" ($05 = 5):

    startaddress = $27B + ((  5 / 2) * 6)
                 = $27B + (   2      * 6)
                 = $27B +    12
                 = $27B +    $C
                 = $287

The MONOB RAM area lays out the characters on the screen as follows:

--sprite #0--    --sprite #1--    --sprite #2--    --sprite #3--
###..... $800    ###.###. $806    ###.###. $80C    ###.###. $812 ]
#.#..... $801    #.#.#... $807    ###..#.. $80D    #...#... $813 ]
###.###. $802    ###.#... $808    .#...#.. $80E    #...###. $814 ] original
#...#... $803    #.#.#... $809    .#...#.. $80F    #...#... $815 ] sprites
#...#... $804    #.#.#... $80A    .#...#.. $810    #...#... $816 ]
#...#... $805    #.#.###. $80B    .#..###. $811    ###.###. $817 ]

###..... $818    ###.###. $81E    ###.###. $824    ###.###. $82A ]
#.#..... $819    #.#.#... $81F    ###..#.. $825    #...#... $82B ]
###.###. $81A    ###.#... $820    .#...#.. $826    #...###. $82C ] 1st dup.
#...#... $81B    #.#.#... $821    .#...#.. $827    #...#... $82D ]
#...#... $81C    #.#.#... $822    .#...#.. $828    #...#... $82E ]
#...#... $81D    #.#.###. $823    .#..###. $829    ###.###. $82F ]

###..... $830    ###.###. $836    ###.###. $83C    ###.###. $842 ]
#.#..... $831    #.#.#... $837    ###..#.. $83D    #...#... $843 ]
###.###. $832    ###.#... $838    .#...#.. $83E    #...###. $844 ] 2nd dup.
#...#... $833    #.#.#... $839    .#...#.. $83F    #...#... $845 ]
#...#... $834    #.#.#... $83A    .#...#.. $840    #...#... $846 ]
#...#... $835    #.#.###. $83B    .#..###. $841    ###.###. $847 ]

###..... $848    ###.###. $84E    ###.###. $854    ###.###. $85A ]
#.#..... $849    #.#.#... $84F    ###..#.. $855    #...#... $85B ]
###.###. $84A    ###.#... $850    .#...#.. $856    #...###. $85C ] 3rd dup.
#...#... $84B    #.#.#... $851    .#...#.. $857    #...#... $85D ]
#...#... $84C    #.#.#... $852    .#...#.. $858    #...#... $85E ]
#...#... $84D    #.#.###. $853    .#..###. $859    ###.###. $85F ]

###..... $860    ###.###. $866    ###.###. $86C    ###.###. $872 ]
#.#..... $861    #.#.#... $867    ###..#.. $86D    #...#... $873 ]
###.###. $862    ###.#... $868    .#...#.. $86E    #...###. $874 ] 4th dup.
#...#... $863    #.#.#... $869    .#...#.. $86F    #...#... $875 ]
#...#... $864    #.#.#... $86A    .#...#.. $870    #...#... $876 ]
#...#... $865    #.#.###. $86B    .#..###. $871    ###.###. $877 ]

###..... $878    ###.###. $87E    ###.###. $884    ###.###. $88A ]
#.#..... $879    #.#.#... $87F    ###..#.. $885    #...#... $88B ]
###.###. $87A    ###.#... $880    .#...#.. $886    #...###. $88C ] 5th dup.
#...#... $87B    #.#.#... $881    .#...#.. $887    #...#... $88D ]
#...#... $87C    #.#.#... $882    .#...#.. $888    #...#... $88E ]
#...#... $87D    #.#.###. $883    .#..###. $889    ###.###. $88F ]

The bad monitor ROM requires mirroring of $1DBF at $19BF, as explained in the "TV Games Computer" book, p. 161.

Game startup code is:

$540:
ZPC              = SADR;           // $8BE..$8BF = $8A2..$8A3
SADR             = BK1;            // $8A2..$8A3 = $8B5..$8B6
BEGA             = BK2;            // $8A4..$8A5 = $8B7..$8B8
BK1              = ZBRR1;          // $8B5..$8B6 = $537..$538
BK2              = ZBRR2;          // $8B7..$8B8 = $539..$53A
INTADR..INTADR+4 = UMODE..UMODE+4; // $8B9..$8BD = $53B..$53F
*($8BC)          = *($8B3);        // PSL status
r1..r3           = *($8AD..$8AF);
r4..r6           = *($8B0..$8B2);
PSU              = *($8B4);
PSL              = %00000000;
goto $8BB;
$8BB:
goto $900;

Signetics EOF (Elektor Object Format)

This is the native tape format for this machine. It is is similar to the Signetics Absolute Object Format (see here) but has some differences, primarily:

block header is 'L' rather than ':';
BCC header calculation includes block header (unlike AOF);
all data is stored in binary format (AOF encodes all data except the block header into ASCII format); and
typical payload length is 16 bytes per block rather than 30.

Each block consists of 7 bytes of header and footer, plus the actual data, as follows:

Offset Size Contents Read by
0 1 byte 'L' ($4C) $797
1 1 byte file number ($01..$0F) $7A5
2..3 2 bytes load address (big-endian) $7B5
4 1 byte block payload length, in bytes (usually 16) $7BF
5 1 byte BCC checksum for header bytes 0..4 $7D1
6..6+length-1 length bytes data payload $7D9
6+length 1 byte BCC checksum for data (bytes 6..6+length-1) $7D9

Checksums start as $00. For each emitted byte, the following algorithm is applied:

    SUMC ^= data;
    SUMC <<= 1;

Eg. for a header of $4C $0A $09 $00 $10, the checksum would be:

    SUMC = 0;    // SUMC is %00000000 [$00];
    SUMC ^= $4C; // SUMC is %01001100 [$4C];
    SUMC <<= 1;  // SUMC is %10011000 [$98];
    SUMC ^= $0A; // SUMC is %10010010 [$92];
    SUMC <<= 1;  // SUMC is %00100101 [$25];
    SUMC ^= $09; // SUMC is %00101100 [$2C];
    SUMC <<= 1;  // SUMC is %01011000 [$58];
    SUMC ^= $00; // SUMC is %01011000 [$58];
    SUMC <<= 1;  // SUMC is %10110000 [$B0];
    SUMC ^= $10; // SUMC is %10100000 [$A0];
    SUMC <<= 1;  // SUMC is %01000001 [$41];

Normally, each block contains 16 actual data bytes (for a total block size of 23 bytes). Each game finishes with a block which has 0 data bytes (and thus no data checksum either). The address field of that block is the starting address of the game.
Note that the Elektor BIOS seems not to bother checking the BCCs of the last block (ie. the "start address" block). Which is just as well since that data BCC isn't correct.

PULSE is called with the desired number of pulses in R3 (1..256). Each pulse is as follows:

CASW = $FF;
wait 8 moments (=80 µS)
CASW = $00;
wait 7 moments (=70 µS)

Each of these pulses consists of first a positive and then a negative excursion of the waveform. So it must be the case that while CASW is $FF it is writing the ascending part of the waveform and while CASW is $00 is is writing the descending part. But then CASW remains at $00 afterwards and the waveform has only silence then.

To write the PULSE TRAIN, we call PULSE(7680), then wait 500 microseconds.
To write a ONE, we call PULSE(6), then wait 500 microseconds.
To write a ZERO, we call PULSE(3), then wait 500 microseconds.

When reading, it looks for transitions where CASR is different from its previous value. There are 2 zero crossings (and 2 edges) for each pulse.

To read a bit:

r1 = CASR;
for (SILENC = 256; SILENC > 0; SILENC--)
{   r2 = 119; // transition counter
    RBIT2:
    for (r3 = 3; r3 > 0; r3--) // pause counter
    {   NOP (ie. delay)
        r0 = r1;
        r1 = CASR;
        r0 ^= r1;
        if high bit is set (ie. there was a transition)
        {   r2++;
            if (r2 > 255)
            {   r2 = 255;
            }
            // r2 will be 120..254 for the 1st..135th iterations, and 255 for the 136th and later iterations
            goto RBIT2;
    }   }
    if (r2 >= 122) // 3 or more edges
    {   return r2;
}   }
// timeout after 54 milliseconds
if (*($8A8) == 0) // ie. if verify mode
{   goto RBIT; // BCC error
} // implied else
goto RCAS1; // restart reading

To read a byte:

set alternate register bank, with carry, logical compare
for (MSCR = 8; MSCR > 0; MSCR--)
{   CHI2:
    r5 = RBIT();
    if (r5 <= 133)
    {   // r5 <= 127 (ie. 8 or less edges) is an 0 bit
        // r5 >= 128 && r5 <= 133 (ie. 9..14 edges) is a 1 bit
        r0 = *($89C);
        r5 <<= 1; // this puts the high bit of r2 into the Carry bit
        r0 <<= 1; // this puts the Carry bit into the low bit of r0
        *($89C) = r0;
    } else
    {   if (++r5 != 256)
        {   goto CHI2;
        } // implied else
        {   goto RCAS1; // new leader (pulse train) detected
}   }   }
set main register bank, clear with carry
r1 = r0;
r0 ^= BCC;
r0 <<= 1;
BCC = r0;
return;

To read a file:

do
{   r2 = RBIT();
} while (r2 < 134 || r2 > 140); // wait until we read 15..21 edges

3 pulses is a clear bit (%0).
6 pulses is a set bit (%1).
9 pulses occur in inter-block gaps (sync).

Each pulse lasts 110 microseconds, so there are 9090.90' pulses per second. Unlike with CUTS or similar formats, all pulses are the same width, and therefore all bits are different widths, and therefore there is no fixed data rate; it depends on the data.
Also, there are silent gaps between bits and between bytes (wheras CUTS has no gaps), and sync pulses (not used on CUTS).
Assuming all the data was 0s, and there weren't any gaps, the baud rate would be 3030.30' baud.
Assuming all the data was 1s, and there weren't any gaps, the baud rate would be 1515.15' baud.
The CASIN/CASOUT registers correspond directly to what is on the cassette; ie. the cassette interface does not encode or decode the data but passes it directly between the computer and the cassette recorder (unlike a typical CUTS cassette interface).

The TVC ("TVGC Cassette") file format is an emulator-only format, as follows:

Offset Size Description
0 1 byte must be $02
1..2 2 bytes loadaddress (where to start loading the program) (big-endian)
3..4 2 bytes loaded into $8BE.. $8BF (program start vector) (big-endian)
5+ filesize-5 loaded into loadaddress and onwards

Magazine Articles

Elektor magazine articles relevant to the TVGC:

Article ENG HOL FRA GER ITA SPA Notes
Elektor Software Service JUN78 Apr78 SEP78 MAY78 -
VHF/UHF TV modulator OCT78 Oct78 NOV78 OCT78 Dec79 Jan81 EPS-9967
VHF/UHF TV modulator (errata) JUN79 Feb79 - - - - -
Joysticks NOV78 Nov78 - NOV78 Jan80 Jul81 -
Programmable Sound Generator JAN79 Jan79 - JAN79 -
Microprocessor TV Games APR79 Apr79 NOV79 APR79 Dec79 Nov80 -
Building the TVGC APR79 Apr79 NOV79 APR79 Dec79 Nov80 -
Building the TVGC (errata) JUN79 Jun79 - - - May81 -
I played TV games (Part 1) OCT79 Oct79 SEP80 OCT79 Mar80 Jan81 -
I played TV games (Part 2) NOV79 Nov79 OCT80 DEC79 Apr80 Apr81 -
Surround (errata) NOV79 Nov79 - DEC79 Apr80 - ESS-003
Elektor microprocessors MAY80 JUN80 - JUN80 Apr81 May80 -
More on TV games: promises... JUN80 JAN81 NOV80 JUN80 Jan81 Dec81 -
More TV games: over 20K on tape OCT80 - - OCT80 Oct81 ESS-007
We haven't forgotten the TVGC! APR81 - - - -
Random number generator JUL81 JUL81 JUL81 JUL81 Jul82 Jul82 -
TV games extended SEP81 SEP81 SEP81 SEP81 Jan82 Feb82 -
TV games extended (errata) OCT81 - Nov81 OCT81 - Mar82 -
Plug-in EPROM programmer OCT81 OCT81 DEC81 OCT81 Mar82 - aka 2716 Programming Device
15 new programs - - - OCT81 ESS-009
Sound effects generator JUL82 JUL82 JUL82 JUL82 Jul83 Jul83 -
Rapid loading games SEP82 SEP82 SEP82 SEP82 Dec82 Jul83 -
Rapid loading games (errata) - NOV82 NOV82 - - - -
VAM: Video/Audio Modulator FEB83 JAN83 - JAN83 Jun83 Sep83 -
VAM: Video/Audio Modulator (errata) - - - - - Jun84 -
Universal memory card MAR83 MAR83 MAR83 MAR83 Sep83 Jun84 -
2650 single step JUL83 JUL83 JUL83 JUL83 Jul84 Jul84 -
Retronics OCT08 OCT08 NOV08 OCT08 -
Mailbox APR09 FEB09 - - -

Elektor magazine articles relevant only to other Signetics-based machines:

Article ENG HOL FRA GER ITA SPA Notes
Complex Sound Generator SEP78 Sep78 - SEP78 ? ? TI SN76477N
ASCII Keyboard NOV78 Nov78 JAN79 NOV78 Jan80 Jun81 KB05
ASCII Keyboard (errata) DEC78 - - - - - -
Elekterminal Dec78 ? ? ? ? ? -
Capitals from the ASCII Keyboard MAY79 May79 JUN79 SEP79 Feb80 ? -
Shift-Lock for ASCII Keyboard JUL79 Jul79 JUL79 JUL79 ? ? -
Multiple sound effects generator MAR81 FEB81 MAY81 MAR81 Nov81 Oct81 TI SN76477N. Aka Imitator
ASCII keyboard MAY83 MAY83 MAY83 MAY83 Nov83 Nov83 -
Publication started Dec74 Apr61 May78 May70 Jun79 Jan80 -
Publication ended never never never never Apr85 20xx -

"The first Elektor in Italian, subtitled "Electronic - Technical Science and Pleasure", was founded by Jacopo Castelfranchi Editore (JCE) in June 1979. In 1982 it passed to the Jackson Publishing Group. 71 issues were released until April 1985, then Jackson renamed it Elettronica Hobby (later becoming Fare Elettronica). In January 1987 the electronics magazine Progetto of the JCE obtained the rights to Elektor and became, only for a part of the pages, the Italian edition, changing its name to Progetto - the pages of Elektor, then Progetto - Elektor and its pages, finally Progetto Elektor. It continued until 1998, when it was replaced by Progetto PC Upgrade. In July/August 2008 a new Italian Elektor was born, published by Inware Edizioni, which then became digital only and ended with the July/August 2013 issue."

Compatibility Notes

ESS-003-6: Demonstration Program: Apparently it fails to set II (Interrupt Inhibit)? (See Elektor magazine, Oct 1979, p. 31 and 37).

ESS-009-C: Circledrive: The introduction doesn't seem to work? But it seems to just be a joystick calibration routine rather than an introduction.

02-a, 02-b: These are identical except that they have different junk at $912..$917 (which is never used anyway).

03-1, 06-5: These are variants of Example2.

05-1: This is identical to Example3, except that it has different junk at $979..$9FF, $A8A..$AFF, and $BD1..$BFF (which are never used anyway) and different values in the data blocks area ($B1B..$B8B).

06-1: This is identical to 05-1, except that it has different operands in the RESET routine, and different values in the data blocks area ($B3B..$BDB).

08-1a: This is identical to Example2 except with different data ($939..$94B).

10-1a: The picture is invisible as it is drawn in blue on a blue background. To see it, you can eg. POKE BGCOLOUR $78 .

10-1b: This is identical to 08-1a except that it also contains the exploding man (jump to $9DA for unexploded version, $A1B for exploded version).

28-7 (Animated S): You must enable interrupts (POKE CPU 0 in debugger) for this to work.

Dragster: Variables are:

Address German English
$1F0E Loeschenspeicher fuer R0 von Hauptprogramm Erasure store for R0 from main program
$1F0F Joystick Daten Joystick data
$1F1E Gengenzeige (linke und rechte Haelfte) ? (left and right half)
$1F1F Flaggen (bit nr.):
7: Taste gedrueckt Flag links
6: Taste gedrueckt Flag rechts
5: Rundenzaehler Flag links
4: Rundenzaehler Flag rechts
3: Farbinvertierung
2: Stopflagge linker Spieler
1: Stopflagge recht Spieler
0: Startflagge
Flags (bit no.):
7: Key depressed flag left
6: Key depressed flag right
5: Round counter flag left
4: Round counter flag right
3: Colour inversion
2: Stop flag left player
1: Stop flag right player
0: Start flag
$1F4E Hauptuhr (rechter Teil) Main clock (right part)
$1F4F Hauptuhr (linker Teil) Main clock (left part)
$1F50 Leituhr Links (rechter Teil) Route clock left (right part)
$1F51 Leituhr Links (links Teil) Route clock left (left part)
$1F52 Leituhr Rechts (rechter Teil) Route clock right (right part)
$1F53 Leituhr Rechts (links Teil) Route clock right (left part)
$1F54 Univerzalzaehler (loeschbar, ?) Universal counter (erasable, ?)
$1F55 Timingzaehler (vorwaertz) Timing counter (before)
$1F56 Offset Dragster (linke + rechte Haelfte):
0 = Dragster
1 = Stall
2 = Blown
3 = ?
4 = Gear
Offset Dragster (left + right half):
0 = Dragster
1 = Stall
2 = Blown
3 = ?
4 = Gear
$1F57 Dragsterposition links Dragster position left
$1F58 Dragsterposition rechts Dragster position right
$1F59 Drehzahlmonposition links Speed position left
$1F5A Drahzahlmonposition rechts Speed position right
$1F5B Invertierungsflagge:
$00 = normal
$FF = invertiert
Inversion flag:
$00 = normal
$FF = inverted
$1F5C Linke Haelfe: Blinkzaehler in Kombination mit $1F55 -> $D0 = 1 Minute
Rechte Haelfe: SPIELVERSIONSZAEHLER
Left half: Blink counter in combination with $1F55 - > $D0 = 1 Minute
Right half: GAME VERSION COUNTER
$1F5D Offset Hinterrad (rechte + links Haelfte):
? = 0
? = 1
weg = 2
Back wheel offset (right + left half):
? = 0
? = 1
off = 2
$1F5E Duplikathoehe (links + rechte Haelfte):
0 = normal
1 = schrift
Duplicate height (left + right half):
0 = normal
1 = writing
$1F5F Rundenzaehler (links + rechte Halfte) Round counter (left + right half)
$1F60 Startampelfarben Start traffic lights colours
$1F61 Marker delay links Marker delay left
$1F62 Marker delay rechte Marker delay right
$1F63 Dragster ? links Dragster ? left
$1F64 Dragster ? rechts Dragster ? right
$1F65 Dragster delay (rechte und linke Haelfte) Dragster delay (right and left halves)

Example5 (PVI Art): Paddle movement seems to be erratic for some reason.

Explosion, Gunshot: The emulator is not currently fully compatible with these due to incomplete PSG emulation. Specifically:

sound effect should not play until START button is pressed
sound effect probably sounds quite different
sound effect should "fade out" (ie. decay)

Table 48: This will not work as-is in the emulator nor on the real machine: you need to fill in the correct data bytes first. See the book for more details.

PIPBUG/BINBUG-based Machines

PIPBUG-based machines have been offered as kits and as assembled systems, in various configurations by various manufacturers, including Signetics (ie. Philips), Applied Technology, etc.
Their defining characteristic is the use of the PIPBUG ROM BIOS by Signetics (or a compatible OS) as their operating system ("monitor"). (PIP stands for Programmable Integrated Processor; it is another name for the 2650).
Generally, there is software compatibility betweem these machines. However, issues such as the differing locations (and amounts) of expansion RAM in different machines can cause problems.
These machines are not frame-based; they lack a graphics coprocessor (eg. PVI or UVI). The system is effectively CPU + ROM + RAM. There are thus no graphics. However, the output can of course be sent to a Visual Display Unit (VDU) aka monitor (as is done by Ami/WinArcadia), or to a printer-style device, eg. a teletype machine.
Reading input from a keyboard or teletype is achieved by reading the Sense bit of the CPU. Writing output to a VDU or teletype is achieved by writing the Flag bit of the CPU. Or, you can use the Flag bit to output sound. But you cannot do text output and sound output simultaneously. All I/O is done in ASCII format. Loading and saving from/to casette and (on the real machine) to papertape is also supported.
They are designed to be used in conjunction with a standard 110-baud ASCII-based teletype device, such as the DEC VT50, VT52 or VT100, or the Electronics Australia Low Cost VDU.
Some machines possess a S-100 ("Altair") bus or other such features (which are not currently emulated).
The optional 4-digit LED display lacks decimal points, in contrast to the Signetics Instructor 50.

Writing an output character is done from right to left (bit #0 first, then #1..#7), as follows:

Flag on
r5 = r0;
DLAY();
DLAY();
Flag off
for (r4 = 8; r4 > 0; r4--)
{ DLAY();
  r5 >>= 1;
  if (r5 & %10000000)
  { Flag on
  } else
  { Flag off
} }
DLAY();
Flag on

CHIN returns with an input character in R0, but not until there is input (ie. it is synchronous). The high bit is used for parity and is always masked out by CHIN; therefore, only 7-bit input is supported. (Ie. the extended ASCII set values $80..$FF are unsupported.)
The Sense bit is normally high. It pulses low during key transmission (ie. whilst receiving clear bits of a byte). Waiting for the Sense bit to become clear is therefore equivalent to "press any key to continue".
Randomization is normally done by asking the user for a keystroke, then rapidly incrementing a register while waiting for the Sense bit to become clear. Eg.

printf("PRESS ANY KEY");
HERE:
addi,r1 1
tpsu    $80
bctr,eq HERE ;if Sense bit is set

will generate a random number (0..255) in r1.
There is also an optional 4-digit 7-segment LED display which can be attached to the system as an additional output device. Writing to this is done via the WRTD command. The operand is interpreted as follows:

bit 7: 1st digit
bit 6: 2nd digit
bit 5: 3rd digit
bit 4: 4th digit
bits 3..0: digit ($0..$9 = '0'..'9', $A..$F = ' ')

Eg. to write '7' to the 3rd digit would require an operand of $27. A delay is necessary between digit writes on the real machine, but not on the emulator. See the relevant magazine article for more information.

CHIN is used for cassette/papertape/keyboard. It works like this:

do
{ switch to alternate register bank
  PORTC = $80; // enable tape reader
} while (Sense bit is set); // ie. until start of start bit
PORTC = 0; // disable tape reader
DLY(); // wait for half a bit (ie. until centre of start bit)
r4 = 0;
for (r5 = 8; r5 > 0; r5--)
{ DLAY(); // wait for one bit
  r0 = PSU & %10000000;
  r4 <<= 1;
  r0 |= r4;
  r4 = r0;
}
DLAY();
r4 &= %01111111; // delete parity bit
r0 = r4;
switch to main register bank
clear With Carry flag
return;

So it is expecting the following format:

.01234567#

and it returns in the middle of the stop bit (#).
So, we enable the tape reader, wait for the Sense bit to become clear, and then disable the tape reader. Then, we read the eight bits from right to left (bits 0..7) via direct sampling of the PSU at the appropriate moment. The parity bit (bit 7) is then discarded (without checking it).

COUT is used for cassette/papertape/keyboard. r0 is passed as an argument; it is the ASCII character to be output. It works like this:

set Flag bit
r5 = r0;
DLAY();
DLAY();
clear Flag bit
for (r4 = 8; r4 > 0; r4--)
{ DLAY();
  r5 >>= 1;
  if (r5 & %10000000 == %10000000)
  { set Flag bit
  } else
  { clear Flag bit
} }
DLAY();
set Flag bit
return;

So, we set the Flag bit, wait, and clear the Flag bit. Then, we write the eight bits from left to right (bits 0..7). The high bit is not treated any differently to the others. Then we wait again, set the Flag bit and return.
Effectively, we write this for each byte:

##.01234567

where # means Flag set, . means Flag clear, and digits mean Flag is set/ cleared according to the relevant bit. We set the Flag before returning.

When loading, it waits until the input line goes low, then looks for the start character (':').

Some games have 110 baud and 300 baud versions. These are still all stored on cassette at 110 baud; the baud rate in this case actually refers to the speed of keyboard and screen operations, rather than cassette speed.

Hardware equates/memory map

Various memory configurations are possible. Here are some examples, but this is not exhaustive:

Region Size EA 77up2 ("Baby") ABC/PC1500/KT9500 EA 78up5 or PC1001 EA 78up5 + 78up10 Modified ABC1500 with CP1002
$0000..$03FF 1K PIPBUG 1 monitor ROM PIPBUG 1 monitor ROM PIPBUG 1 monitor ROM PIPBUG 1 monitor ROM PIPBUG 2 monitor ROM
$0400..$0436 55 bytes RAM for PIPBUG 1 RAM for PIPBUG 1 RAM for PIPBUG 1 RAM for PIPBUG 1 PIPLA
$0437..$04FF 201 bytes user RAM user RAM user RAM user RAM PIPLA
$0500..$05FF 256 bytes mirror of $0400..$04FF user RAM user RAM user RAM PIPLA
$0600..$07FF 512 bytes mirrors of $0400..$04FF mirror of $0400..$05FF user RAM user RAM PIPLA
$0800..$0861 98 bytes mirror of $0000..$0061 mirror of $0000..$0061 user RAM on 4K version user RAM SMI RAM used by PIPBUG 2 + PIPLA
$0862..$087F 30 bytes mirror of $0062..$007F mirror of $0062..$007F user RAM on 4K version user RAM SMI RAM unused by PIPBUG 2 + PIPLA
$0880..$0BFF 896 bytes mirror of $0080..$03FF mirror of $0080..$03FF user RAM on 4K version user RAM unused
$0C00..$0DFF 512 bytes mirror of $0400..$05FF mirror of $0400..$05FF user RAM on 4K version user RAM motherboard RAM
$0E00..$0FFF 512 bytes mirror of $0600..$07FF mirror of $0600..$07FF user RAM on 4K version user RAM optional RAM
$1000..$13FF 1K mirror of $0000..$03FF mirror of $0000..$03FF user RAM on 4K version user RAM unmapped?
$1400..$1EFF 2.75K mirror of $0400..$0EFF mirror of $0400..$0EFF unused? user RAM unmapped?
$1F00..$1FFF 256 bytes mirror of $0F00..$0FFF mirror of $0F00..$0FFF unused? user RAM mirror of $0F00..$0FFF
$2000..$2FF9 4090 bytes mirror of $0000..$0FF9 mirror of $0000..$0FF9 unused? user RAM unmapped?
$2FFA..$2FFF 6 bytes mirror of $0FFA..$0FFF mirror of $0FFA..$0FFF unused? RAM (for use by EPROM) unmapped?
$3000..$3FFF 4K mirror of $0000..$0FFF mirror of $0000..$0FFF unused? EPROM unmapped?
$4000..$41FF 512 bytes mirror of $0000..$01FF mirror of $0000..$01FF unused? ROM? (for eg. ETI-686) unmapped?
$4200..$57FF 5.5K mirrors of $0000..$0FFF mirrors of $0000..$0FFF unused? RAM (for eg. ETI-686?) unmapped?
$5800..$7CFF 5.25K mirrors of $0000..$0FFF mirrors of $0000..$0FFF unused? RAM (for eg. ETI-686?) unmapped?
$6D00..$7FFF 4.75K mirrors of $0000..$0FFF mirrors of $0000..$0FFF unused? RAM? (eg. for Linearisatie) unmapped?

EA 77up2 ("Baby"): 1K ROM + 256 bytes RAM
Signetics Adaptable Board Computer aka Signetics PC1500 aka Signetics KT9500: 1K ROM + 512 bytes RAM
EA 78up5 ("1K Mini Computer" aka "2650 Mini Computer") or Signetics PC1001: 1K ROM + 1K RAM
EA 78up5+78up10 ("Expanded Mini Computer with EPROM"): 1K ROM + 15.75K RAM + 4K EPROM
Modified ABC1500 with CP1002 (see TN132): 2K ROM + 1152 bytes RAM

The ABC also supports parallel and serial I/O, has an on-board clock, and can be expanded to up to 24K of RAM. These features are not supported by Ami/WinPIPBUG, as the mappings of the serial and parallel I/O ports and clock are unknown.
The Signetics PC1001 Microprocessor Prototyping Card (1K RAM) (assembled) is a different, though closely related, machine.
The Signetics PC2000 is a 4K expansion RAM board suitable for (at least) the PC1001/PC1500/KT9500.
The Signetics PC3000 is another "evaluation kit" (as are the other Signetics-manufactured machines), about which almost nothing is known.
A progression of mostly Applied Technology products can be traced from Baby 2650 to Mini 2650 to ETI-636 to BINBUG-based machines to DG680 to Microbee.

While using PIPBUG 1 "A" and "S" commands, valid inputs are:

<CR> (ie. ENTER) to exit
<LF> (ie. Ctrl+J) to display the next address/register
<nn><CR> to change contents address/register to <nn> and exit
<nn><LF> (ie. type the value then press Ctrl+J) to change contents of address/register to <nn> and display the next address/register.

PIPBUG 1 ROM areas are as follows:

$000..$01C: initialization
$01D..$05A: command handler
$05B..$0A3: input a cmd line into buffer
$0A4..$0AA: subr that stores double precision into temp
$0AB..$0F3: display and alter memory
$0F4..$139: selectively display and alter registers
$13A..$15F: goto address
$160..$1AA: breakpoint runtime code
$1AB..$1C9: subr to clear a bkpt
$1CA..$223: break point
$224..$23C: input two hex chars and form as byte in R1
$23D..$245: calculate the BCC char, EOR and then rotate left
$246..$24F: lookup ASCII char in hex value table
$250..$268: abort exit from any level of subr
$269..$285: byte in R1 output in hex
$286..$2A7: 110 baud input for papertape and char 1 MHz clock
$2A8..$2B3: delay for one bit time
$2B4..$2D4: COUT (Character OUT) routine
$2D5..$30F: get a number from the buffer into R1-R2
$310..$35A: dump to paper tape in object format
$35B..$3B4: subrs for outputting blanks
$3B5..$3FD: load from papertape in object format
$3FE..$3FF: unused?

Note that that PIPBUG, and programs for it, generally run with signed (arithmetic) comparisons, as opposed to the Arcadia, etc. which generally run with unsigned (logical) comparisons.

COUT has the following side effects when called:
PSL: CC = lt;
PSL: primary register bank (r1..r3) is always selected
PSU: Flag pin is always set
r0 = r4 = 0;
r5 = the old r0 (ie. what you passed)
You should not call it when SP > 5 (you need one level of stack for COUT's return address and another level for DLAY's return address).

CHIN has the following side effects when called:
PSL: CC = gt;
PSL: primary register bank (r1..r3) is always selected
PSL: With Carry bit is always set
r0 = r4 = return code (1..127)
r5 = *(DATABUS) = 0;
You should not call it when SP > 5 (you need one level of stack for CHIN's return address and another level for DLAY's/DLY's return address).

Utility EPROM areas are as follows:

Region Label Area Type
$2FFA..$2FFB START RAM data (1st CLI parameter)
$2FFC..$2FFD END RAM data (2nd CLI parameter)
$2FFE..$2FFE NEW RAM data (3rd CLI parameter)
$3C07 GPAR EPROM subroutine
$3C2A INCRT EPROM subroutine
$3C3C PADR EPROM subroutine
$3C50 HEXLIST EPROM subroutine
$3C6A SEARCH EPROM subroutine
$3C8A HEXIN EPROM subroutine
$3CDD VERIFY EPROM subroutine
$3CF8 OK EPROM code section
$3CCB ? EPROM subroutine
$3CCE ? EPROM subroutine
$3D0E FAULTY EPROM code section
$3D3B MOVE EPROM subroutine

Some useful Ctrl-codes are:

Ctrl+G = BEL (7)
Ctrl+H = BS (8)
Ctrl+I = TAB (9)
Ctrl+J = LF (10)
Ctrl+M = CR (13)

Teletype I/O

At 1MHz, there are 1,000,000 short/fast cycles per second, which is 333,333.3' long/slow cycles per second. So each long/slow cycle lasts for 1,000,000÷333,333.3' = 3 µsecs.

At 110 baud, each bit ideally lasts for 9090.90' µsecs.
At 300 baud, each bit ideally lasts for 3333.3' µsecs.
At 1200 baud, each bit ideally lasts for 833.3' µsecs.

For a 110 baud teletype, a full bit delay is:
    bsta,un TDLA  ;3
TDLA:
    eorz    r0    ;2
    bdrr,r0 $ ;256*3
    bdrr,r0 $ ;256*3
TDLY:
    bdrr,r0 $ ;256*3
    lodi,r0 229   ;2
    bdrr,r0 $ ;229*3
    retc,un       ;3

= 3001 long/slow cycles = 9003 µsecs

and a half bit delay is:
    bsta,un TDLY  ;3
TDLY:
    bdrr,r0 $ ;256*3
    lodi,r0 229   ;2
    bdrr,r0 $ ;229*3
    retc,un       ;3

= 1463 long/slow cycles = 4389 µsecs

For a 1200 baud RS-232 terminal, a full bit delay is:
    bsta,un DLAY  ;3
DLAY:
    lodi,r0 89    ;2
DL1:
    bdrr,r0 DL1   ;3
    retc,un       ;3

3+2+(3*89)+3 = 275 long/slow cycles = 825 µsecs

and a half bit delay is:
    bsta,un DLY   ;3
DLY:
    lodi,r0 58    ;2
    bctr,un DL1   ;2
DL1:
    bdrr,r0 DL1   ;3
    retc,un       ;3

3+2+2+(3*58)+3 = 184 long/slow cycle s = 552 µsecs

Note that these delays are shorter than the ideals. However, there is also code that must be run by the caller to process (emit/receive) each bit, which takes additional time to run.

Each character begins with a start bit (%0). Then data bits 0..6 are sent (least significant bits first). Then a parity bit is sent. Then stop bits are sent.
The letter "U" has the 7-bit ASCII code of $55 (%1010101). This would be transmitted as %0,1010101,1,00.

Cassette I/O

A clear (0) bit (Sense bit off) is represented by a slowly pulsing signal. About 10 slowly pulsing cycles represents a clear bit.
A set (1) bit (Sense bit on) is represented by a quickly pulsing signal. About 20 quickly pulsing cycles represents a set bit.

The length of each bit, in time, is identical regardless of its value. (This is in contrast to the system used on the Elektor, which has identical pulses for all values and differentiates values by the positioning of the pulses.)

PIPBUG 1 encodes/decodes the files as Signetics Absolute Object Format (AOF) at 110 baud. There is a low start bit preceding each byte, and two high stop bits following each byte. The parity bit (bit 7 of the data) is always thrown away when reading. The data rate is approximately 10 raw data bytes per second. As values are encoded into ASCII pairs, the actual number of bytes loaded/saved per second from the user's point of view is about 5.

PIPBUG, BINBUG (except ACOS), CD2650 and (presumably) Selbstbaucomputer use a standard Kansas City Computer Users Tape Standard (CUTS) cassette interface to transform standard teletype I/O into cassette tape I/O (ie. high and low bits are turned into the appropriate pulse trains when recording, and pulse trains are analyzed and decoded into high and low bits during playback), usually at 110 baud:

Every "0" bit becomes 21.81' cycles (pulses) of a 2400 Hz tone, and
Every "1" bit becomes 10.90' cycles (pulses) of a 1200 Hz tone.

In practice, exactly 22 or 11 pulses should be done (as it is best to wait until the next zero crossing before doing the next bit).
The BIOS and games only see the teletype Sense and Flag lines, they cannot see the pulse trains. The cassette interface is invisible to the software; as far as it knows there is only an ordinary teletype attached. This means that you can record/play any sort of teletype I/O directly to/ from the tape, not just formal dumps.
300 baud is identical to 110 baud except that only 8 (instead of 22) or 4 (instead of 11) pulses are done; the pulses themselves are identical.

To load a tape, translate it to teletype format:

22 2400 Hz pulses in 9.09' msec = having teletype Sense low for 9.09' msec ("0").
11 1200 Hz pulses in 9.09' msec = having teletype Sense high for 9.09' msec ("1").
If we see a zero crossing every 413.2231 µsec it is a "0", and we should see 22 of those (or more if there are several 0 bits).
If we see a zero crossing every 826.4463 µsec it is a "1", and we should see 11 of those (or more if there are several 1 bits).

and vice versa when saving:

While teletype Sense is 0, flip the tape Sense every 413.2231 ÷ 2 µsec.
While teletype Sense is 1, flip the tape Sense every 826.4463 ÷ 2 µsec.

This is sufficient for all baud rates and encodings.

Here are diagrammatic views of the system, in record mode:

At computer Tape Terminal (VDU/keyboard)
Flag -> tape can save this -> VDU
Sense <- input comes from kybd <- Keyboard

and in playback mode:

At computer Tape Terminal (VDU/keyboard)
Flag -> tape ignores this -> VDU
Sense <- input comes from tape Neither

Papertape I/O

The "teletype tape reader" mentioned in the Prometheus manual is a slow one built into the teletype machine (but not the same as the printer + keyboard). It runs at 10 characters per second, which is 110 baud equivalent. 10 bytes = 10 characters = 1 inch = 1 second.
The "fast paper-tape reader" is a High Speed Paper Tape (HSPT) reader unit. It run at 300 characters per second, which is 3300 baud equivalent.

For input:
If you're using a slow paper tape reader, Prometheus (and PIPBUG 1) can control it directly via the I/O control port.
If you're using a fast paper tape reader, you need your own code (in EPROM) at $2000..$21FF for Prometheus, and it is not supported in PIPBUG 1.
For output:
Prometheus will print a listing to the teletype as normal, and also will punch a tape for the AOF (Signetics Absolute Object Format) file.
Prometheus writes $C0 to the control port to read & advance the papertape.

PIPBUG 1 writes $80 in a rather tight loop (at $28A) to the I/O control port when idle (to read from any papertape that may be present). Only when there is no papertape in the unit can the keyboard and audio cassette be used for input.
Writing $80 to I/O control port "enable[s paper]tape reader". (The papertape punch must not require it, only the reader.) So presumably when that happens the papertape reader unit reads the next byte and then sends it one bit at a time in a teletype-like manner via the Sense pin, and advances the papertape. The papertape would continue to advance automatically until the motor was turned off. As soon as the start bit (a %0) is sent by the papertape unit and heard by PIPBUG 1, it stops the tape reader by writing $0 to the I/O control port. But then it reads the rest of the byte so obviously the tape reader finishes the entire byte regardless once it has started. When it has finished sending, it will then check again whether to send another (at least that is how the emulator works).
When loading, PIPBUG 1 just emits $80s to the I/O control port.
When dumping, all I/O ports are idle (everything is done via the Flag bit). The punch listens to that and when it has heard an entire byte it punches the byte and advances the papertape (ie. it is event-driven rather than continuous).

Printer I/O

EA printer interface:
Uses the data port for (parallel) input and output.
Does not use buffering.
Can accept a new character every 64th of a second (in condensed mode) or every 32nd of a second (in expanded mode).
As soon as the game writes to the data port, it prints the character.
While printing is in progress, the high bit of the input data port is low. It is high while idle.

ETI-641 printer interface:
Uses extended port $19 (25) for (parallel) input and output.
Uses an internal 128-byte buffer.
Can accept a new character every 200,000th of a second (5 µsecs).
Once the internal buffer fills, or a CR is received by the printer, it prints (and empties) the entire buffer.
While printing is in progress, the high bit of the input extended port $19 (25) is low. It is high while idle.

To convert from ASCII to EUY format:

output =  (input & 0x1F)
       | ((input & 0x60) << 1);
output = ^output;

ASCII EUY
$00..$1F $00..$1F
$20..$3F $40..$5F
$40..$5F $80..$9F
$60..$7F $C0..$DF
$80..$9F $00..$1F
$A0..$BF $40..$5F
$C0..$DF $80..$9F
$E0..$FF $C0..$DF

Eg. 'A' would be $41 in ASCII format or $81 in EUY format.
The above table is before the one's complement (ie. flip all bits) operation.

Matsushita EUY-10E023LE printer model number can be decomposed as follows:

E = Electrosensitive
2 = 250mm flat cable, 372mm connector cable
3 = 32/21/16 cpl with 2 spacing dots (horizontally between each character)
L = left-to-right scanning, MSD character generator
E = manufacturer code

Unarchived Software

The following PIPBUG programs are confirmed but unavailable: C-BUG, MultiBug, MATBUG, SBCBUG, 2650 DOS, etc.

If you know of any other software, or have dumps/tapes/listings of any of the above software, please email us.

Various official Signetics 2650 cross-development software was available for the NCSS (National Computer Software Systems) timesharing system (running the VP/CSS OS on IBM System/370 hardware) and the GE (General Electric) Timesharing System Mark III (running the GECOS-III OS on Honeywell 645 hardware):

PIPHASM: Programmable Integrated Processor Hex Assembler
- takes ASCII source code (on disk) as input
- produces AOF file (on disk) as output
- written in FORTRAN IV
- two versions: AS1100 (16-bit) and AS1000 (32-bit).

PIPHTAP: Programmable Integrated Processor Hex Tape
- takes AOF file (on disk) as input
- punches AOF file (on paper tape) as output (for 2650 PC 1001)
- written in FORTRAN IV

PIPSTAP: Programmable Integrated Processor SMS Tape
- takes AOF file (on disk) as input
- punches SMS file (on paper tape) as output (for burning a PROM)
- written in FORTRAN IV

PIPSIM: Programmable Integrated Processor (cross-)Simulator
- takes AOF file (on disk) and ASCII command file (on disk) as input
- written in FORTRAN IV
- two versions: SM1100 (16-bit) and SM1000 (32-bit).

PLµS: Programming Language for Micro Systems
- compiler (produces AOF format as output?)
- extended version of PL/M language
- written in ? language by Gary Kildall for Signetics
- two versions: 2650PC1100 (16-bit) and 2650PL000 (32-bit).

None of this software has been dumped. The PLµS manual is sought so that this language can be reimplemented from the specification.

BINBUG Hardware

The FPGA640 + TCT PCG are mapped as follows:

Region Description
$7000..$700F 1st..16th rows of UDG #0 imagery
$7010..$701F 1st..16th rows of UDG #1 imagery
... ...
$77F0..$77FF 1st..16th rows of UDG #127 imagery
$7800..$783F Contents and inverse video of 1st character row (1st..64th columns):
Bit 7: inverse video (0=off, 1=on)
Bits 6..0: character ($00..$7F)
$7840..$787F Contents and inverse video of 2nd character row (1st..64th columns)
... ...
$7BC0..$7BFF Contents and inverse video of 16th character row (1st..64th columns)
$7C00..$7C3F Colours and attributes of 1st character row (1st..64th columns):
Bit 7: red (0=off, 1=on)
Bit 6: green (0=off, 1=on)
Bit 5: blue (0=off, 1=on)
Bits 4..3: unused
Bit 2: 0=PDG (Pre-Defined Graphic), 1=UDG (User-Defined Graphic)
Bit 1: graphics (0=off, 1=on)
Bit 0: flash (0=off, 1=on)
$7C40..$7C7F Colours and attributes of 2nd character row (1st..64th columns)
... ...
$7FC0..$7FFF Colours and attributes of 16th character row (1st..64th columns)

To read the joystick buttons, you REDE from port $09. Bits are:

Bits 7..6: unused
Bits 5..3: switch bits for joystick A:
 Switch '1' = %000 (fire/serve)
 Switch '2' = %001
 Switch '3' = %010
 Switch '4' = %011
 Switch '5' = %100
 Switch '6' = %101
 Switch '7' = %110
 Nothing    = %111
Bits 2..0: switch bits for joystick B (same format as for joystick A)

To read the joystick paddles, first WRTE a value of $00..$07 to port $EF, according to what you want to read:

Channel '1' (%000): 2nd joystick horizontal
Channel '2' (%001): 2nd joystick vertical
Channel '3' (%010): 1st joystick horizontal
Channel '4' (%011): 1st joystick vertical
Channel '5' (%100): 3rd joystick horizontal
Channel '6' (%101): 3rd joystick vertical
Channel '7' (%110): 4th joystick horizontal
Channel '8' (%111): 4th joystick vertical

Now REDE from port $EF in a loop until the MSB is low (ie. until something in the $00..$7F range is returned).
The X-axis is inverted, ie. $00=right..$7F=left.
The Y-axis is normal, ie. $00=up..$7F=down.

BINBUG BIOS

The following routines are cross-compatible between PIPBUG 1 and BINBUG:

Address Label
$1D EBUG
$5B LINE
$8A CRLF
$A4 STRT
$269 BOUT
$27D AGAP
$286 CHIN
$2B4 COUT
$2DB GNUM

The following routines have the same names, and roughly equivalent functionality, under both PIPBUG 1 and BINBUG; however, they have different addresses and therefore are not directly cross-compatible. They may also have different register usage, stack usage, side effects, etc.:

PIPBUG 1 BINBUG Label
$1F $22 MBUG
$AB $B9 ALTE
$F4 $F1 SREG
$131 $121 GOTO
$160 $14A BK01
$1AB $17B CLBK
$1CA $197 CLR
$1E5 $1A1 BKPT
$246 $28C LKUP
$2A8 $39B DLAY
$2AD $39F DLY
$310 $2E5 DUMP
$35B $27B FORM
$35F $2FB GAP
$3B5 $3C4 LOAD

Here is a useful table comparing various BIOSes for these machines. As there is insufficient information regarding C-BUG, SBCBUG, etc. they are not listed:

OS Input baud Output baud Tape baud MHz Range Year Notes
PIPBUG 1 110 110 110 1 $0..$3FF ? EA 300 baud mod is possible
PIPBUG 2 110/300 110/300 110/300? 1 $0..$3FF ? Supports both rates
HYBUG 300 300 High-speed 1 ? ? 600 and 1200 baud mods are possible
BINBUG 3.5 300/parallel? DG640 300 1? $0..$7FF ? -
BINBUG 3.6 300/parallel? DG640 300 1 $0..$7FF 1979 BINBUG3.6.pdf
BINBUG 4.4 300 DG640 ACOS 1? $0..$7FF ? Supports ACOS and DOS
BINBUG 4.5 ? DG640 ACOS 1? $0..$7FF ? Supports ACOS and DOS
BINBUG 5.2 1200 1200 ACOS 1? $0..$7FF ? Supports ACOS and DOS
BINBUG 5.3 ? serial ACOS ? $0..$7FF ? -
BINBUG 6.0 Eurocard Eurocard ACOS ? $0..$7FF ? -
BINBUG 6.1 150?/300/1200/2400/parallel DG640 ACOS ? $0..$7FF 1982 sbcos_manual.pdf . Supports ACOS and VHSDOS
BINBUG 7.1 300/1200/2400/parallel 300/1200/2400 ACOS ? $0..$7FF 1982 sbcos_manual.pdf . Supports ACOS and VHSDOS
GBUG 300 DG640 ? 1/2 $0..$7FF ? Optional parallel keyboard support
MATBUG 4.1 Eurocard DG640 ? ? $0..$7FF ? matbug_monitor_for_eurocard_system_notes.pdf
MIKEBUG 3 300 DG640 ? 1? $0..$7FF ? -
Multibug (serial version) 300 300 300 ? $0..$7FF 1981 ETI-685
Multibug (memory-mapped version) parallel DG640 300 ? $0..$7FF 1981 ETI-685
MYBUG 300 DG640 ? 1? $0..$7FF ? -
ACOS 2.C - - Control & data I/O ports 1? $6000..$63FF ? -
ACOS 3.C - - Extended I/O ports? 1? $6000..$63FF ? -
ACOS 3.E - - Extended I/O ports 1 $6000..$63FF 1982 sbcos_manual.pdf
VHSDOS 2.6a - - - 1? $6800..$6FFF 1981 vhs_dos_v26a_source_listing.pdf
MicroDOS 4.5a - - - 1? $6800..$6FFF ? MICRODOS.SRC

Baud rates given assume 1 MHz operation (and are therefore doubled at 2 MHz).

BINBUG outputs both to the serial port (at 300 baud) and to the VDU (1K RAM at $7800..$7FFF).
According to ETI Oct 1982, BINBUG can work at 300, 1200 & 2400 baud (!).
SBCOS = SBCBUG = BINBUG 6.1 + BINBUG 7.1 + ACOS 3.E
BINBUG 6.1 & 7.1 support/expect ETI-685 processor board.

Floppy Disk I/O

Each block is 256 bytes, as follows:

     0: next track (0..39).
     1: next sector (1..10).
2..255: data bytes

CMD files are used by VHSDOS and MicroDOS for storage of games. They normally consist of two or more chunks concatenated together. Each chunk has a 3-byte header:

  0..1: load address of chunk (big-endian)
     2: length of payload in bytes (normally <= $FB)

then the payload itself (if any) follows.
The CMD file is terminated by a chunk like this:

  0..1: start address of game (big-endian)
     2: $00

with no payload.
CMD chunks can seamlessly cross block boundaries.
Note that the above assumes that the block header (ie. "next track" and "next sector" bytes) have already been skipped.

The 10 sectors per track are numbered 1..10 and have an interleave of 7, ie. 1, 8, 5, 2, 9, 6, 3, 10, 7, 4. (The available disk images are already deinterleaved.)
At the flux level, there are 250,000 flux transitions per second.
Each bit is 1 clock flux + 1 data flux, so there are 125,000 bits per sec.
So theoretically 15,625 bytes per sec, if there were no sector headers, inter-sector gaps, etc.
However, post-read processing must occur, so we can only really achieve 1/8th of that speed (hence the interleaving). Thus, an effective speed of 12,800 bytes ÷ 8 = 1,600 bytes per second.
After each 20 msec sector read, there is about 140 msec of post-processing as the disk continues to spin. But the CPU has to keep up with the drive as it reads each byte, because the drive has no buffer. Therefore most of the time the CPU is not bothering to read the data passing under the head, but is instead post-processing previously read data.
With an infinitely fast disk, it takes about 30,642 clocks. ie. about 30.642 msec, between reading an arbitrary byte in a given sector and reading the equivalent byte in the next sector.
It also takes additional time to change tracks, and to start or stop the motor.

Game Help

These do nothing very useful, but are not expected to (eg. they are for controlling unemulated hardware, or are code fragments for incorporation into your own games):

2708 EPROM Programmer
Linearization (Linearisatie)
Vector Magnetometer
Wind Furnace Controller
most routines

These games are hardcoded for 110 baud:

On-screen Clock
PPI-based EPROM Programmer
110 baud version of Lunar Lander (machine code)
110 baud version of Biorhythms
110 baud version of Funny Farm Races

These games are hardcoded for 300 baud:

Astro Trek (but an official 110 baud patch is provided with the listing)
Reaction Timer
300 baud version of Lunar Lander (machine code)
300 baud version of Biorhythms
300 baud version of Funny Farm Races

2650 Line Assembler:

"It is not identical but is very similar to the Line Assembler described in the article "2650 mini assembler simplifies programming" by Jamieson Rowe published in the April 1979 issue of Electronics Australia (p. 76-80) and the follow-up article "Improving the 2650 mini line assembler" by A. M. Kollosche in February 1980 (p. 76)." - Chris Burrows.

The start address begin at 2, and increments by 2 every time F5 (reset) is pressed, for some reason.

2650 Micro BASIC programs (eg. Acey-Deucy, Blackjack, Guessing Game (2650 Micro BASIC version), Life (2650 Micro BASIC version), Lunar Lander (2650 Micro BASIC version), Number Game, Radio Log, Temperature Conversion):

Type G1 and then press ENTER to begin execution.
Type L1 and then press ENTER to list the program.
Type E1 and then press ENTER to replace lines starting from 1. Ctrl-C when done.

Some program statements are:

Letter Description Example Standard BASIC
A ASCII input AD INPUT D$:LET D=ASC(LEFT$(D$,1))
E End E END
G GoTo G5 GOTO 5
I Numeric input ID INPUT D
L Let L0=D LET D=0
P Print P"HELLO" PRINT "HELLO"
T Test (if) TD>0 IF D>0 THEN
$ Remark $HELLO$ REM HELLO

Reverse Polish Notation is used. Eg. LVD+#=D,FT-=F means:

L Let
V push V onto the stack
D push D onto the stack
+ add them together
# unary negation of the result (ie. result = -result)
= store the result in
D variable D
, Let again
F push F onto the stack
T push T onto the stack
- subtract T from F
= store the result in
F variable F

Alien Hunt:

Has ! and " at end of table rows, for some reason.

Assembler, AssemblerPlusDemonstration, AssemblerPlusAssemblerList:

AssemblerPlusDemonstration.pgm will assemble without errors, but the generated machine code is not being written to memory anywhere (we are asking in this case for ORG $2000, but it doesn't seem to matter where we ask for, it is never generated anywhere). Hence, the current dump of Assembler.pgm should be considered suspect (although it has been verified). As the other two are based on that dump, they are likewise suspect.

Astro Trek:

Here is a map of all 2401 (7*7*7*7) sectors of the galaxy:

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 Quadrant 5 Quadrant 6 Quadrant 7
S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7
Q1 S1 1,1
1,1
1,1
2,1
1,1
3,1
1,1
4,1
1,1
5,1
1,1
6,1
1,1
7,1
2,1
1,1
2,1
2,1
2,1
3,1
2,1
4,1
2,1
5,1
2,1
6,1
2,1
7,1
3,1
1,1
3,1
2,1
3,1
3,1
3,1
4,1
3,1
5,1
3,1
6,1
3,1
7,1
4,1
1,1
4,1
2,1
4,1
3,1
4,1
4,1
4,1
5,1
4,1
6,1
4,1
7,1
5,1
1,1
5,1
2,1
5,1
3,1
5,1
4,1
5,1
5,1
5,1
6,1
5,1
7,1
6,1
1,1
6,1
2,1
6,1
3,1
6,1
4,1
6,1
5,1
6,1
6,1
6,1
7,1
7,1
1,1
7,1
2,1
7,1
3,1
7,1
4,1
7,1
5,1
7,1
6,1
7,1
7,1
S2 1,1
1,2
1,1
2,2
1,1
3,2
1,1
4,2
1,1
5,2
1,1
6,2
1,1
7,2
2,1
1,2
2,1
2,2
2,1
3,2
2,1
4,2
2,1
5,2
2,1
6,2
2,1
7,2
3,1
1,2
3,1
2,2
3,1
3,2
3,1
4,2
3,1
5,2
3,1
6,2
3,1
7,2
4,1
1,2
4,1
2,2
4,1
3,2
4,1
4,2
4,1
5,2
4,1
6,2
4,1
7,2
5,1
1,2
5,1
2,2
5,1
3,2
5,1
4,2
5,1
5,2
5,1
6,2
5,1
7,2
6,1
1,2
6,1
2,2
6,1
3,2
6,1
4,2
6,1
5,2
6,1
6,2
6,1
7,2
7,1
1,2
7,1
2,2
7,1
3,2
7,1
4,2
7,1
5,2
7,1
6,2
7,1
7,2
S3 1,1
1,3
1,1
2,3
1,1
3,3
1,1
4,3
1,1
5,3
1,1
6,3
1,1
7,3
2,1
1,3
2,1
2,3
2,1
3,3
2,1
4,3
2,1
5,3
2,1
6,3
2,1
7,3
3,1
1,3
3,1
2,3
3,1
3,3
3,1
4,3
3,1
5,3
3,1
6,3
3,1
7,3
4,1
1,3
4,1
2,3
4,1
3,3
4,1
4,3
4,1
5,3
4,1
6,3
4,1
7,3
5,1
1,3
5,1
2,3
5,1
3,3
5,1
4,3
5,1
5,3
5,1
6,3
5,1
7,3
6,1
1,3
6,1
2,3
6,1
3,3
6,1
4,3
6,1
5,3
6,1
6,3
6,1
7,3
7,1
1,3
7,1
2,3
7,1
3,3
7,1
4,3
7,1
5,3
7,1
6,3
7,1
7,3
S4 1,1
1,4
1,1
2,4
1,1
3,4
1,1
4,4
1,1
5,4
1,1
6,4
1,1
7,4
2,1
1,4
2,1
2,4
2,1
3,4
2,1
4,4
2,1
5,4
2,1
6,4
2,1
7,4
3,1
1,4
3,1
2,4
3,1
3,4
3,1
4,4
3,1
5,4
3,1
6,4
3,1
7,4
4,1
1,4
4,1
2,4
4,1
3,4
4,1
4,4
4,1
5,4
4,1
6,4
4,1
7,4
5,1
1,4
5,1
2,4
5,1
3,4
5,1
4,4
5,1
5,4
5,1
6,4
5,1
7,4
6,1
1,4
6,1
2,4
6,1
3,4
6,1
4,4
6,1
5,4
6,1
6,4
6,1
7,4
7,1
1,4
7,1
2,4
7,1
3,4
7,1
4,4
7,1
5,4
7,1
6,4
7,1
7,4
S5 1,1
1,5
1,1
2,5
1,1
3,5
1,1
4,5
1,1
5,5
1,1
6,5
1,1
7,5
2,1
1,5
2,1
2,5
2,1
3,5
2,1
4,5
2,1
5,5
2,1
6,5
2,1
7,5
3,1
1,5
3,1
2,5
3,1
3,5
3,1
4,5
3,1
5,5
3,1
6,5
3,1
7,5
4,1
1,5
4,1
2,5
4,1
3,5
4,1
4,5
4,1
5,5
4,1
6,5
4,1
7,5
5,1
1,5
5,1
2,5
5,1
3,5
5,1
4,5
5,1
5,5
5,1
6,5
5,1
7,5
6,1
1,5
6,1
2,5
6,1
3,5
6,1
4,5
6,1
5,5
6,1
6,5
6,1
7,5
7,1
1,5
7,1
2,5
7,1
3,5
7,1
4,5
7,1
5,5
7,1
6,5
7,1
7,5
S6 1,1
1,6
1,1
2,6
1,1
3,6
1,1
4,6
1,1
5,6
1,1
6,6
1,1
7,6
2,1
1,6
2,1
2,6
2,1
3,6
2,1
4,6
2,1
5,6
2,1
6,6
2,1
7,6
3,1
1,6
3,1
2,6
3,1
3,6
3,1
4,6
3,1
5,6
3,1
6,6
3,1
7,6
4,1
1,6
4,1
2,6
4,1
3,6
4,1
4,6
4,1
5,6
4,1
6,6
4,1
7,6
5,1
1,6
5,1
2,6
5,1
3,6
5,1
4,6
5,1
5,6
5,1
6,6
5,1
7,6
6,1
1,6
6,1
2,6
6,1
3,6
6,1
4,6
6,1
5,6
6,1
6,6
6,1
7,6
7,1
1,6
7,1
2,6
7,1
3,6
7,1
4,6
7,1
5,6
7,1
6,6
7,1
7,6
S7 1,1
1,7
1,1
2,7
1,1
3,7
1,1
4,7
1,1
5,7
1,1
6,7
1,1
7,7
2,1
1,7
2,1
2,7
2,1
3,7
2,1
4,7
2,1
5,7
2,1
6,7
2,1
7,7
3,1
1,7
3,1
2,7
3,1
3,7
3,1
4,7
3,1
5,7
3,1
6,7
3,1
7,7
4,1
1,7
4,1
2,7
4,1
3,7
4,1
4,7
4,1
5,7
4,1
6,7
4,1
7,7
5,1
1,7
5,1
2,7
5,1
3,7
5,1
4,7
5,1
5,7
5,1
6,7
5,1
7,7
6,1
1,7
6,1
2,7
6,1
3,7
6,1
4,7
6,1
5,7
6,1
6,7
6,1
7,7
7,1
1,7
7,1
2,7
7,1
3,7
7,1
4,7
7,1
5,7
7,1
6,7
7,1
7,7
Q2 S1 1,2
1,1
1,2
2,1
1,2
3,1
1,2
4,1
1,2
5,1
1,2
6,1
1,2
7,1
2,2
1,1
2,2
2,1
2,2
3,1
2,2
4,1
2,2
5,1
2,2
6,1
2,2
7,1
3,2
1,1
3,2
2,1
3,2
3,1
3,2
4,1
3,2
5,1
3,2
6,1
3,2
7,1
4,2
1,1
4,2
2,1
4,2
3,1
4,2
4,1
4,2
5,1
4,2
6,1
4,2
7,1
5,2
1,1
5,2
2,1
5,2
3,1
5,2
4,1
5,2
5,1
5,2
6,1
5,2
7,1
6,2
1,1
6,2
2,1
6,2
3,1
6,2
4,1
6,2
5,1
6,2
6,1
6,2
7,1
7,2
1,1
7,2
2,1
7,2
3,1
7,2
4,1
7,2
5,1
7,2
6,1
7,2
7,1
S2 1,2
1,2
1,2
2,2
1,2
3,2
1,2
4,2
1,2
5,2
1,2
6,2
1,2
7,2
2,2
1,2
2,2
2,2
2,2
3,2
2,2
4,2
2,2
5,2
2,2
6,2
2,2
7,2
3,2
1,2
3,2
2,2
3,2
3,2
3,2
4,2
3,2
5,2
3,2
6,2
3,2
7,2
4,2
1,2
4,2
2,2
4,2
3,2
4,2
4,2
4,2
5,2
4,2
6,2
4,2
7,2
5,2
1,2
5,2
2,2
5,2
3,2
5,2
4,2
5,2
5,2
5,2
6,2
5,2
7,2
6,2
1,2
6,2
2,2
6,2
3,2
6,2
4,2
6,2
5,2
6,2
6,2
6,2
7,2
7,2
1,2
7,2
2,2
7,2
3,2
7,2
4,2
7,2
5,2
7,2
6,2
7,2
7,2
S3 1,2
1,3
1,2
2,3
1,2
3,3
1,2
4,3
1,2
5,3
1,2
6,3
1,2
7,3
2,2
1,3
2,2
2,3
2,2
3,3
2,2
4,3
2,2
5,3
2,2
6,3
2,2
7,3
3,2
1,3
3,2
2,3
3,2
3,3
3,2
4,3
3,2
5,3
3,2
6,3
3,2
7,3
4,2
1,3
4,2
2,3
4,2
3,3
4,2
4,3
4,2
5,3
4,2
6,3
4,2
7,3
5,2
1,3
5,2
2,3
5,2
3,3
5,2
4,3
5,2
5,3
5,2
6,3
5,2
7,3
6,2
1,3
6,2
2,3
6,2
3,3
6,2
4,3
6,2
5,3
6,2
6,3
6,2
7,3
7,2
1,3
7,2
2,3
7,2
3,3
7,2
4,3
7,2
5,3
7,2
6,3
7,2
7,3
S4 1,2
1,4
1,2
2,4
1,2
3,4
1,2
4,4
1,2
5,4
1,2
6,4
1,2
7,4
2,2
1,4
2,2
2,4
2,2
3,4
2,2
4,4
2,2
5,4
2,2
6,4
2,2
7,4
3,2
1,4
3,2
2,4
3,2
3,4
3,2
4,4
3,2
5,4
3,2
6,4
3,2
7,4
4,2
1,4
4,2
2,4
4,2
3,4
4,2
4,4
4,2
5,4
4,2
6,4
4,2
7,4
5,2
1,4
5,2
2,4
5,2
3,4
5,2
4,4
5,2
5,4
5,2
6,4
5,2
7,4
6,2
1,4
6,2
2,4
6,2
3,4
6,2
4,4
6,2
5,4
6,2
6,4
6,2
7,4
7,2
1,4
7,2
2,4
7,2
3,4
7,2
4,4
7,2
5,4
7,2
6,4
7,2
7,4
S5 1,2
1,5
1,2
2,5
1,2
3,5
1,2
4,5
1,2
5,5
1,2
6,5
1,2
7,5
2,2
1,5
2,2
2,5
2,2
3,5
2,2
4,5
2,2
5,5
2,2
6,5
2,2
7,5
3,2
1,5
3,2
2,5
3,2
3,5
3,2
4,5
3,2
5,5
3,2
6,5
3,2
7,5
4,2
1,5
4,2
2,5
4,2
3,5
4,2
4,5
4,2
5,5
4,2
6,5
4,2
7,5
5,2
1,5
5,2
2,5
5,2
3,5
5,2
4,5
5,2
5,5
5,2
6,5
5,2
7,5
6,2
1,5
6,2
2,5
6,2
3,5
6,2
4,5
6,2
5,5
6,2
6,5
6,2
7,5
7,2
1,5
7,2
2,5
7,2
3,5
7,2
4,5
7,2
5,5
7,2
6,5
7,2
7,5
S6 1,2
1,6
1,2
2,6
1,2
3,6
1,2
4,6
1,2
5,6
1,2
6,6
1,2
7,6
2,2
1,6
2,2
2,6
2,2
3,6
2,2
4,6
2,2
5,6
2,2
6,6
2,2
7,6
3,2
1,6
3,2
2,6
3,2
3,6
3,2
4,6
3,2
5,6
3,2
6,6
3,2
7,6
4,2
1,6
4,2
2,6
4,2
3,6
4,2
4,6
4,2
5,6
4,2
6,6
4,2
7,6
5,2
1,6
5,2
2,6
5,2
3,6
5,2
4,6
5,2
5,6
5,2
6,6
5,2
7,6
6,2
1,6
6,2
2,6
6,2
3,6
6,2
4,6
6,2
5,6
6,2
6,6
6,2
7,6
7,2
1,6
7,2
2,6
7,2
3,6
7,2
4,6
7,2
5,6
7,2
6,6
7,2
7,6
S7 1,2
1,7
1,2
2,7
1,2
3,7
1,2
4,7
1,2
5,7
1,2
6,7
1,2
7,7
2,2
1,7
2,2
2,7
2,2
3,7
2,2
4,7
2,2
5,7
2,2
6,7
2,2
7,7
3,2
1,7
3,2
2,7
3,2
3,7
3,2
4,7
3,2
5,7
3,2
6,7
3,2
7,7
4,2
1,7
4,2
2,7
4,2
3,7
4,2
4,7
4,2
5,7
4,2
6,7
4,2
7,7
5,2
1,7
5,2
2,7
5,2
3,7
5,2
4,7
5,2
5,7
5,2
6,7
5,2
7,7
6,2
1,7
6,2
2,7
6,2
3,7
6,2
4,7
6,2
5,7
6,2
6,7
6,2
7,7
7,2
1,7
7,2
2,7
7,2
3,7
7,2
4,7
7,2
5,7
7,2
6,7
7,2
7,7
Q3 S1 1,3
1,1
1,3
2,1
1,3
3,1
1,3
4,1
1,3
5,1
1,3
6,1
1,3
7,1
2,3
1,1
2,3
2,1
2,3
3,1
2,3
4,1
2,3
5,1
2,3
6,1
2,3
7,1
3,3
1,1
3,3
2,1
3,3
3,1
3,3
4,1
3,3
5,1
3,3
6,1
3,3
7,1
4,3
1,1
4,3
2,1
4,3
3,1
4,3
4,1
4,3
5,1
4,3
6,1
4,3
7,1
5,3
1,1
5,3
2,1
5,3
3,1
5,3
4,1
5,3
5,1
5,3
6,1
5,3
7,1
6,3
1,1
6,3
2,1
6,3
3,1
6,3
4,1
6,3
5,1
6,3
6,1
6,3
7,1
7,3
1,1
7,3
2,1
7,3
3,1
7,3
4,1
7,3
5,1
7,3
6,1
7,3
7,1
S2 1,3
1,2
1,3
2,2
1,3
3,2
1,3
4,2
1,3
5,2
1,3
6,2
1,3
7,2
2,3
1,2
2,3
2,2
2,3
3,2
2,3
4,2
2,3
5,2
2,3
6,2
2,3
7,2
3,3
1,2
3,3
2,2
3,3
3,2
3,3
4,2
3,3
5,2
3,3
6,2
3,3
7,2
4,3
1,2
4,3
2,2
4,3
3,2
4,3
4,2
4,3
5,2
4,3
6,2
4,3
7,2
5,3
1,2
5,3
2,2
5,3
3,2
5,3
4,2
5,3
5,2
5,3
6,2
5,3
7,2
6,3
1,2
6,3
2,2
6,3
3,2
6,3
4,2
6,3
5,2
6,3
6,2
6,3
7,2
7,3
1,2
7,3
2,2
7,3
3,2
7,3
4,2
7,3
5,2
7,3
6,2
7,3
7,2
S3 1,3
1,3
1,3
2,3
1,3
3,3
1,3
4,3
1,3
5,3
1,3
6,3
1,3
7,3
2,3
1,3
2,3
2,3
2,3
3,3
2,3
4,3
2,3
5,3
2,3
6,3
2,3
7,3
3,3
1,3
3,3
2,3
3,3
3,3
3,3
4,3
3,3
5,3
3,3
6,3
3,3
7,3
4,3
1,3
4,3
2,3
4,3
3,3
4,3
4,3
4,3
5,3
4,3
6,3
4,3
7,3
5,3
1,3
5,3
2,3
5,3
3,3
5,3
4,3
5,3
5,3
5,3
6,3
5,3
7,3
6,3
1,3
6,3
2,3
6,3
3,3
6,3
4,3
6,3
5,3
6,3
6,3
6,3
7,3
7,3
1,3
7,3
2,3
7,3
3,3
7,3
4,3
7,3
5,3
7,3
6,3
7,3
7,3
S4 1,3
1,4
1,3
2,4
1,3
3,4
1,3
4,4
1,3
5,4
1,3
6,4
1,3
7,4
2,3
1,4
2,3
2,4
2,3
3,4
2,3
4,4
2,3
5,4
2,3
6,4
2,3
7,4
3,3
1,4
3,3
2,4
3,3
3,4
3,3
4,4
3,3
5,4
3,3
6,4
3,3
7,4
4,3
1,4
4,3
2,4
4,3
3,4
4,3
4,4
4,3
5,4
4,3
6,4
4,3
7,4
5,3
1,4
5,3
2,4
5,3
3,4
5,3
4,4
5,3
5,4
5,3
6,4
5,3
7,4
6,3
1,4
6,3
2,4
6,3
3,4
6,3
4,4
6,3
5,4
6,3
6,4
6,3
7,4
7,3
1,4
7,3
2,4
7,3
3,4
7,3
4,4
7,3
5,4
7,3
6,4
7,3
7,4
S5 1,3
1,5
1,3
2,5
1,3
3,5
1,3
4,5
1,3
5,5
1,3
6,5
1,3
7,5
2,3
1,5
2,3
2,5
2,3
3,5
2,3
4,5
2,3
5,5
2,3
6,5
2,3
7,5
3,3
1,5
3,3
2,5
3,3
3,5
3,3
4,5
3,3
5,5
3,3
6,5
3,3
7,5
4,3
1,5
4,3
2,5
4,3
3,5
4,3
4,5
4,3
5,5
4,3
6,5
4,3
7,5
5,3
1,5
5,3
2,5
5,3
3,5
5,3
4,5
5,3
5,5
5,3
6,5
5,3
7,5
6,3
1,5
6,3
2,5
6,3
3,5
6,3
4,5
6,3
5,5
6,3
6,5
6,3
7,5
7,3
1,5
7,3
2,5
7,3
3,5
7,3
4,5
7,3
5,5
7,3
6,5
7,3
7,5
S6 1,3
1,6
1,3
2,6
1,3
3,6
1,3
4,6
1,3
5,6
1,3
6,6
1,3
7,6
2,3
1,6
2,3
2,6
2,3
3,6
2,3
4,6
2,3
5,6
2,3
6,6
2,3
7,6
3,3
1,6
3,3
2,6
3,3
3,6
3,3
4,6
3,3
5,6
3,3
6,6
3,3
7,6
4,3
1,6
4,3
2,6
4,3
3,6
4,3
4,6
4,3
5,6
4,3
6,6
4,3
7,6
5,3
1,6
5,3
2,6
5,3
3,6
5,3
4,6
5,3
5,6
5,3
6,6
5,3
7,6
6,3
1,6
6,3
2,6
6,3
3,6
6,3
4,6
6,3
5,6
6,3
6,6
6,3
7,6
7,3
1,6
7,3
2,6
7,3
3,6
7,3
4,6
7,3
5,6
7,3
6,6
7,3
7,6
S7 1,3
1,7
1,3
2,7
1,3
3,7
1,3
4,7
1,3
5,7
1,3
6,7
1,3
7,7
2,3
1,7
2,3
2,7
2,3
3,7
2,3
4,7
2,3
5,7
2,3
6,7
2,3
7,7
3,3
1,7
3,3
2,7
3,3
3,7
3,3
4,7
3,3
5,7
3,3
6,7
3,3
7,7
4,3
1,7
4,3
2,7
4,3
3,7
4,3
4,7
4,3
5,7
4,3
6,7
4,3
7,7
5,3
1,7
5,3
2,7
5,3
3,7
5,3
4,7
5,3
5,7
5,3
6,7
5,3
7,7
6,3
1,7
6,3
2,7
6,3
3,7
6,3
4,7
6,3
5,7
6,3
6,7
6,3
7,7
7,3
1,7
7,3
2,7
7,3
3,7
7,3
4,7
7,3
5,7
7,3
6,7
7,3
7,7
Q4 S1 1,4
1,1
1,4
2,1
1,4
3,1
1,4
4,1
1,4
5,1
1,4
6,1
1,4
7,1
2,4
1,1
2,4
2,1
2,4
3,1
2,4
4,1
2,4
5,1
2,4
6,1
2,4
7,1
3,4
1,1
3,4
2,1
3,4
3,1
3,4
4,1
3,4
5,1
3,4
6,1
3,4
7,1
4,4
1,1
4,4
2,1
4,4
3,1
4,4
4,1
4,4
5,1
4,4
6,1
4,4
7,1
5,4
1,1
5,4
2,1
5,4
3,1
5,4
4,1
5,4
5,1
5,4
6,1
5,4
7,1
6,4
1,1
6,4
2,1
6,4
3,1
6,4
4,1
6,4
5,1
6,4
6,1
6,4
7,1
7,4
1,1
7,4
2,1
7,4
3,1
7,4
4,1
7,4
5,1
7,4
6,1
7,4
7,1
S2 1,4
1,2
1,4
2,2
1,4
3,2
1,4
4,2
1,4
5,2
1,4
6,2
1,4
7,2
2,4
1,2
2,4
2,2
2,4
3,2
2,4
4,2
2,4
5,2
2,4
6,2
2,4
7,2
3,4
1,2
3,4
2,2
3,4
3,2
3,4
4,2
3,4
5,2
3,4
6,2
3,4
7,2
4,4
1,2
4,4
2,2
4,4
3,2
4,4
4,2
4,4
5,2
4,4
6,2
4,4
7,2
5,4
1,2
5,4
2,2
5,4
3,2
5,4
4,2
5,4
5,2
5,4
6,2
5,4
7,2
6,4
1,2
6,4
2,2
6,4
3,2
6,4
4,2
6,4
5,2
6,4
6,2
6,4
7,2
7,4
1,2
7,4
2,2
7,4
3,2
7,4
4,2
7,4
5,2
7,4
6,2
7,4
7,2
S3 1,4
1,3
1,4
2,3
1,4
3,3
1,4
4,3
1,4
5,3
1,4
6,3
1,4
7,3
2,4
1,3
2,4
2,3
2,4
3,3
2,4
4,3
2,4
5,3
2,4
6,3
2,4
7,3
3,4
1,3
3,4
2,3
3,4
3,3
3,4
4,3
3,4
5,3
3,4
6,3
3,4
7,3
4,4
1,3
4,4
2,3
4,4
3,3
4,4
4,3
4,4
5,3
4,4
6,3
4,4
7,3
5,4
1,3
5,4
2,3
5,4
3,3
5,4
4,3
5,4
5,3
5,4
6,3
5,4
7,3
6,4
1,3
6,4
2,3
6,4
3,3
6,4
4,3
6,4
5,3
6,4
6,3
6,4
7,3
7,4
1,3
7,4
2,3
7,4
3,3
7,4
4,3
7,4
5,3
7,4
6,3
7,4
7,3
S4 1,4
1,4
1,4
2,4
1,4
3,4
1,4
4,4
1,4
5,4
1,4
6,4
1,4
7,4
2,4
1,4
2,4
2,4
2,4
3,4
2,4
4,4
2,4
5,4
2,4
6,4
2,4
7,4
3,4
1,4
3,4
2,4
3,4
3,4
3,4
4,4
3,4
5,4
3,4
6,4
3,4
7,4
4,4
1,4
4,4
2,4
4,4
3,4
4,4
4,4
4,4
5,4
4,4
6,4
4,4
7,4
5,4
1,4
5,4
2,4
5,4
3,4
5,4
4,4
5,4
5,4
5,4
6,4
5,4
7,4
6,4
1,4
6,4
2,4
6,4
3,4
6,4
4,4
6,4
5,4
6,4
6,4
6,4
7,4
7,4
1,4
7,4
2,4
7,4
3,4
7,4
4,4
7,4
5,4
7,4
6,4
7,4
7,4
S5 1,4
1,5
1,4
2,5
1,4
3,5
1,4
4,5
1,4
5,5
1,4
6,5
1,4
7,5
2,4
1,5
2,4
2,5
2,4
3,5
2,4
4,5
2,4
5,5
2,4
6,5
2,4
7,5
3,4
1,5
3,4
2,5
3,4
3,5
3,4
4,5
3,4
5,5
3,4
6,5
3,4
7,5
4,4
1,5
4,4
2,5
4,4
3,5
4,4
4,5
4,4
5,5
4,4
6,5
4,4
7,5
5,4
1,5
5,4
2,5
5,4
3,5
5,4
4,5
5,4
5,5
5,4
6,5
5,4
7,5
6,4
1,5
6,4
2,5
6,4
3,5
6,4
4,5
6,4
5,5
6,4
6,5
6,4
7,5
7,4
1,5
7,4
2,5
7,4
3,5
7,4
4,5
7,4
5,5
7,4
6,5
7,4
7,5
S6 1,4
1,6
1,4
2,6
1,4
3,6
1,4
4,6
1,4
5,6
1,4
6,6
1,4
7,6
2,4
1,6
2,4
2,6
2,4
3,6
2,4
4,6
2,4
5,6
2,4
6,6
2,4
7,6
3,4
1,6
3,4
2,6
3,4
3,6
3,4
4,6
3,4
5,6
3,4
6,6
3,4
7,6
4,4
1,6
4,4
2,6
4,4
3,6
4,4
4,6
4,4
5,6
4,4
6,6
4,4
7,6
5,4
1,6
5,4
2,6
5,4
3,6
5,4
4,6
5,4
5,6
5,4
6,6
5,4
7,6
6,4
1,6
6,4
2,6
6,4
3,6
6,4
4,6
6,4
5,6
6,4
6,6
6,4
7,6
7,4
1,6
7,4
2,6
7,4
3,6
7,4
4,6
7,4
5,6
7,4
6,6
7,4
7,6
S7 1,4
1,7
1,4
2,7
1,4
3,7
1,4
4,7
1,4
5,7
1,4
6,7
1,4
7,7
2,4
1,7
2,4
2,7
2,4
3,7
2,4
4,7
2,4
5,7
2,4
6,7
2,4
7,7
3,4
1,7
3,4
2,7
3,4
3,7
3,4
4,7
3,4
5,7
3,4
6,7
3,4
7,7
4,4
1,7
4,4
2,7
4,4
3,7
4,4
4,7
4,4
5,7
4,4
6,7
4,4
7,7
5,4
1,7
5,4
2,7
5,4
3,7
5,4
4,7
5,4
5,7
5,4
6,7
5,4
7,7
6,4
1,7
6,4
2,7
6,4
3,7
6,4
4,7
6,4
5,7
6,4
6,7
6,4
7,7
7,4
1,7
7,4
2,7
7,4
3,7
7,4
4,7
7,4
5,7
7,4
6,7
7,4
7,7
Q5 S1 1,5
1,1
1,5
2,1
1,5
3,1
1,5
4,1
1,5
5,1
1,5
6,1
1,5
7,1
2,5
1,1
2,5
2,1
2,5
3,1
2,5
4,1
2,5
5,1
2,5
6,1
2,5
7,1
3,5
1,1
3,5
2,1
3,5
3,1
3,5
4,1
3,5
5,1
3,5
6,1
3,5
7,1
4,5
1,1
4,5
2,1
4,5
3,1
4,5
4,1
4,5
5,1
4,5
6,1
4,5
7,1
5,5
1,1
5,5
2,1
5,5
3,1
5,5
4,1
5,5
5,1
5,5
6,1
5,5
7,1
6,5
1,1
6,5
2,1
6,5
3,1
6,5
4,1
6,5
5,1
6,5
6,1
6,5
7,1
7,5
1,1
7,5
2,1
7,5
3,1
7,5
4,1
7,5
5,1
7,5
6,1
7,5
7,1
S2 1,5
1,2
1,5
2,2
1,5
3,2
1,5
4,2
1,5
5,2
1,5
6,2
1,5
7,2
2,5
1,2
2,5
2,2
2,5
3,2
2,5
4,2
2,5
5,2
2,5
6,2
2,5
7,2
3,5
1,2
3,5
2,2
3,5
3,2
3,5
4,2
3,5
5,2
3,5
6,2
3,5
7,2
4,5
1,2
4,5
2,2
4,5
3,2
4,5
4,2
4,5
5,2
4,5
6,2
4,5
7,2
5,5
1,2
5,5
2,2
5,5
3,2
5,5
4,2
5,5
5,2
5,5
6,2
5,5
7,2
6,5
1,2
6,5
2,2
6,5
3,2
6,5
4,2
6,5
5,2
6,5
6,2
6,5
7,2
7,5
1,2
7,5
2,2
7,5
3,2
7,5
4,2
7,5
5,2
7,5
6,2
7,5
7,2
S3 1,5
1,3
1,5
2,3
1,5
3,3
1,5
4,3
1,5
5,3
1,5
6,3
1,5
7,3
2,5
1,3
2,5
2,3
2,5
3,3
2,5
4,3
2,5
5,3
2,5
6,3
2,5
7,3
3,5
1,3
3,5
2,3
3,5
3,3
3,5
4,3
3,5
5,3
3,5
6,3
3,5
7,3
4,5
1,3
4,5
2,3
4,5
3,3
4,5
4,3
4,5
5,3
4,5
6,3
4,5
7,3
5,5
1,3
5,5
2,3
5,5
3,3
5,5
4,3
5,5
5,3
5,5
6,3
5,5
7,3
6,5
1,3
6,5
2,3
6,5
3,3
6,5
4,3
6,5
5,3
6,5
6,3
6,5
7,3
7,5
1,3
7,5
2,3
7,5
3,3
7,5
4,3
7,5
5,3
7,5
6,3
7,5
7,3
S4 1,5
1,4
1,5
2,4
1,5
3,4
1,5
4,4
1,5
5,4
1,5
6,4
1,5
7,4
2,5
1,4
2,5
2,4
2,5
3,4
2,5
4,4
2,5
5,4
2,5
6,4
2,5
7,4
3,5
1,4
3,5
2,4
3,5
3,4
3,5
4,4
3,5
5,4
3,5
6,4
3,5
7,4
4,5
1,4
4,5
2,4
4,5
3,4
4,5
4,4
4,5
5,4
4,5
6,4
4,5
7,4
5,5
1,4
5,5
2,4
5,5
3,4
5,5
4,4
5,5
5,4
5,5
6,4
5,5
7,4
6,5
1,4
6,5
2,4
6,5
3,4
6,5
4,4
6,5
5,4
6,5
6,4
6,5
7,4
7,5
1,4
7,5
2,4
7,5
3,4
7,5
4,4
7,5
5,4
7,5
6,4
7,5
7,4
S5 1,5
1,5
1,5
2,5
1,5
3,5
1,5
4,5
1,5
5,5
1,5
6,5
1,5
7,5
2,5
1,5
2,5
2,5
2,5
3,5
2,5
4,5
2,5
5,5
2,5
6,5
2,5
7,5
3,5
1,5
3,5
2,5
3,5
3,5
3,5
4,5
3,5
5,5
3,5
6,5
3,5
7,5
4,5
1,5
4,5
2,5
4,5
3,5
4,5
4,5
4,5
5,5
4,5
6,5
4,5
7,5
5,5
1,5
5,5
2,5
5,5
3,5
5,5
4,5
5,5
5,5
5,5
6,5
5,5
7,5
6,5
1,5
6,5
2,5
6,5
3,5
6,5
4,5
6,5
5,5
6,5
6,5
6,5
7,5
7,5
1,5
7,5
2,5
7,5
3,5
7,5
4,5
7,5
5,5
7,5
6,5
7,5
7,5
S6 1,5
1,6
1,5
2,6
1,5
3,6
1,5
4,6
1,5
5,6
1,5
6,6
1,5
7,6
2,5
1,6
2,5
2,6
2,5
3,6
2,5
4,6
2,5
5,6
2,5
6,6
2,5
7,6
3,5
1,6
3,5
2,6
3,5
3,6
3,5
4,6
3,5
5,6
3,5
6,6
3,5
7,6
4,5
1,6
4,5
2,6
4,5
3,6
4,5
4,6
4,5
5,6
4,5
6,6
4,5
7,6
5,5
1,6
5,5
2,6
5,5
3,6
5,5
4,6
5,5
5,6
5,5
6,6
5,5
7,6
6,5
1,6
6,5
2,6
6,5
3,6
6,5
4,6
6,5
5,6
6,5
6,6
6,5
7,6
7,5
1,6
7,5
2,6
7,5
3,6
7,5
4,6
7,5
5,6
7,5
6,6
7,5
7,6
S7 1,5
1,7
1,5
2,7
1,5
3,7
1,5
4,7
1,5
5,7
1,5
6,7
1,5
7,7
2,5
1,7
2,5
2,7
2,5
3,7
2,5
4,7
2,5
5,7
2,5
6,7
2,5
7,7
3,5
1,7
3,5
2,7
3,5
3,7
3,5
4,7
3,5
5,7
3,5
6,7
3,5
7,7
4,5
1,7
4,5
2,7
4,5
3,7
4,5
4,7
4,5
5,7
4,5
6,7
4,5
7,7
5,5
1,7
5,5
2,7
5,5
3,7
5,5
4,7
5,5
5,7
5,5
6,7
5,5
7,7
6,5
1,7
6,5
2,7
6,5
3,7
6,5
4,7
6,5
5,7
6,5
6,7
6,5
7,7
7,5
1,7
7,5
2,7
7,5
3,7
7,5
4,7
7,5
5,7
7,5
6,7
7,5
7,7
Q6 S1 1,6
1,1
1,6
2,1
1,6
3,1
1,6
4,1
1,6
5,1
1,6
6,1
1,6
7,1
2,6
1,1
2,6
2,1
2,6
3,1
2,6
4,1
2,6
5,1
2,6
6,1
2,6
7,1
3,6
1,1
3,6
2,1
3,6
3,1
3,6
4,1
3,6
5,1
3,6
6,1
3,6
7,1
4,6
1,1
4,6
2,1
4,6
3,1
4,6
4,1
4,6
5,1
4,6
6,1
4,6
7,1
5,6
1,1
5,6
2,1
5,6
3,1
5,6
4,1
5,6
5,1
5,6
6,1
5,6
7,1
6,6
1,1
6,6
2,1
6,6
3,1
6,6
4,1
6,6
5,1
6,6
6,1
6,6
7,1
7,6
1,1
7,6
2,1
7,6
3,1
7,6
4,1
7,6
5,1
7,6
6,1
7,6
7,1
S2 1,6
1,2
1,6
2,2
1,6
3,2
1,6
4,2
1,6
5,2
1,6
6,2
1,6
7,2
2,6
1,2
2,6
2,2
2,6
3,2
2,6
4,2
2,6
5,2
2,6
6,2
2,6
7,2
3,6
1,2
3,6
2,2
3,6
3,2
3,6
4,2
3,6
5,2
3,6
6,2
3,6
7,2
4,6
1,2
4,6
2,2
4,6
3,2
4,6
4,2
4,6
5,2
4,6
6,2
4,6
7,2
5,6
1,2
5,6
2,2
5,6
3,2
5,6
4,2
5,6
5,2
5,6
6,2
5,6
7,2
6,6
1,2
6,6
2,2
6,6
3,2
6,6
4,2
6,6
5,2
6,6
6,2
6,6
7,2
7,6
1,2
7,6
2,2
7,6
3,2
7,6
4,2
7,6
5,2
7,6
6,2
7,6
7,2
S3 1,6
1,3
1,6
2,3
1,6
3,3
1,6
4,3
1,6
5,3
1,6
6,3
1,6
7,3
2,6
1,3
2,6
2,3
2,6
3,3
2,6
4,3
2,6
5,3
2,6
6,3
2,6
7,3
3,6
1,3
3,6
2,3
3,6
3,3
3,6
4,3
3,6
5,3
3,6
6,3
3,6
7,3
4,6
1,3
4,6
2,3
4,6
3,3
4,6
4,3
4,6
5,3
4,6
6,3
4,6
7,3
5,6
1,3
5,6
2,3
5,6
3,3
5,6
4,3
5,6
5,3
5,6
6,3
5,6
7,3
6,6
1,3
6,6
2,3
6,6
3,3
6,6
4,3
6,6
5,3
6,6
6,3
6,6
7,3
7,6
1,3
7,6
2,3
7,6
3,3
7,6
4,3
7,6
5,3
7,6
6,3
7,6
7,3
S4 1,6
1,4
1,6
2,4
1,6
3,4
1,6
4,4
1,6
5,4
1,6
6,4
1,6
7,4
2,6
1,4
2,6
2,4
2,6
3,4
2,6
4,4
2,6
5,4
2,6
6,4
2,6
7,4
3,6
1,4
3,6
2,4
3,6
3,4
3,6
4,4
3,6
5,4
3,6
6,4
3,6
7,4
4,6
1,4
4,6
2,4
4,6
3,4
4,6
4,4
4,6
5,4
4,6
6,4
4,6
7,4
5,6
1,4
5,6
2,4
5,6
3,4
5,6
4,4
5,6
5,4
5,6
6,4
5,6
7,4
6,6
1,4
6,6
2,4
6,6
3,4
6,6
4,4
6,6
5,4
6,6
6,4
6,6
7,4
7,6
1,4
7,6
2,4
7,6
3,4
7,6
4,4
7,6
5,4
7,6
6,4
7,6
7,4
S5 1,6
1,5
1,6
2,5
1,6
3,5
1,6
4,5
1,6
5,5
1,6
6,5
1,6
7,5
2,6
1,5
2,6
2,5
2,6
3,5
2,6
4,5
2,6
5,5
2,6
6,5
2,6
7,5
3,6
1,5
3,6
2,5
3,6
3,5
3,6
4,5
3,6
5,5
3,6
6,5
3,6
7,5
4,6
1,5
4,6
2,5
4,6
3,5
4,6
4,5
4,6
5,5
4,6
6,5
4,6
7,5
5,6
1,5
5,6
2,5
5,6
3,5
5,6
4,5
5,6
5,5
5,6
6,5
5,6
7,5
6,6
1,5
6,6
2,5
6,6
3,5
6,6
4,5
6,6
5,5
6,6
6,5
6,6
7,5
7,6
1,5
7,6
2,5
7,6
3,5
7,6
4,5
7,6
5,5
7,6
6,5
7,6
7,5
S6 1,6
1,6
1,6
2,6
1,6
3,6
1,6
4,6
1,6
5,6
1,6
6,6
1,6
7,6
2,6
1,6
2,6
2,6
2,6
3,6
2,6
4,6
2,6
5,6
2,6
6,6
2,6
7,6
3,6
1,6
3,6
2,6
3,6
3,6
3,6
4,6
3,6
5,6
3,6
6,6
3,6
7,6
4,6
1,6
4,6
2,6
4,6
3,6
4,6
4,6
4,6
5,6
4,6
6,6
4,6
7,6
5,6
1,6
5,6
2,6
5,6
3,6
5,6
4,6
5,6
5,6
5,6
6,6
5,6
7,6
6,6
1,6
6,6
2,6
6,6
3,6
6,6
4,6
6,6
5,6
6,6
6,6
6,6
7,6
7,6
1,6
7,6
2,6
7,6
3,6
7,6
4,6
7,6
5,6
7,6
6,6
7,6
7,6
S7 1,6
1,7
1,6
2,7
1,6
3,7
1,6
4,7
1,6
5,7
1,6
6,7
1,6
7,7
2,6
1,7
2,6
2,7
2,6
3,7
2,6
4,7
2,6
5,7
2,6
6,7
2,6
7,7
3,6
1,7
3,6
2,7
3,6
3,7
3,6
4,7
3,6
5,7
3,6
6,7
3,6
7,7
4,6
1,7
4,6
2,7
4,6
3,7
4,6
4,7
4,6
5,7
4,6
6,7
4,6
7,7
5,6
1,7
5,6
2,7
5,6
3,7
5,6
4,7
5,6
5,7
5,6
6,7
5,6
7,7
6,6
1,7
6,6
2,7
6,6
3,7
6,6
4,7
6,6
5,7
6,6
6,7
6,6
7,7
7,6
1,7
7,6
2,7
7,6
3,7
7,6
4,7
7,6
5,7
7,6
6,7
7,6
7,7
Q7 S1 1,7
1,1
1,7
2,1
1,7
3,1
1,7
4,1
1,7
5,1
1,7
6,1
1,7
7,1
2,7
1,1
2,7
2,1
2,7
3,1
2,7
4,1
2,7
5,1
2,7
6,1
2,7
7,1
3,7
1,1
3,7
2,1
3,7
3,1
3,7
4,1
3,7
5,1
3,7
6,1
3,7
7,1
4,7
1,1
4,7
2,1
4,7
3,1
4,7
4,1
4,7
5,1
4,7
6,1
4,7
7,1
5,7
1,1
5,7
2,1
5,7
3,1
5,7
4,1
5,7
5,1
5,7
6,1
5,7
7,1
6,7
1,1
6,7
2,1
6,7
3,1
6,7
4,1
6,7
5,1
6,7
6,1
6,7
7,1
7,7
1,1
7,7
2,1
7,7
3,1
7,7
4,1
7,7
5,1
7,7
6,1
7,7
7,1
S2 1,7
1,2
1,7
2,2
1,7
3,2
1,7
4,2
1,7
5,2
1,7
6,2
1,7
7,2
2,7
1,2
2,7
2,2
2,7
3,2
2,7
4,2
2,7
5,2
2,7
6,2
2,7
7,2
3,7
1,2
3,7
2,2
3,7
3,2
3,7
4,2
3,7
5,2
3,7
6,2
3,7
7,2
4,7
1,2
4,7
2,2
4,7
3,2
4,7
4,2
4,7
5,2
4,7
6,2
4,7
7,2
5,7
1,2
5,7
2,2
5,7
3,2
5,7
4,2
5,7
5,2
5,7
6,2
5,7
7,2
6,7
1,2
6,7
2,2
6,7
3,2
6,7
4,2
6,7
5,2
6,7
6,2
6,7
7,2
7,7
1,2
7,7
2,2
7,7
3,2
7,7
4,2
7,7
5,2
7,7
6,2
7,7
7,2
S3 1,7
1,3
1,7
2,3
1,7
3,3
1,7
4,3
1,7
5,3
1,7
6,3
1,7
7,3
2,7
1,3
2,7
2,3
2,7
3,3
2,7
4,3
2,7
5,3
2,7
6,3
2,7
7,3
3,7
1,3
3,7
2,3
3,7
3,3
3,7
4,3
3,7
5,3
3,7
6,3
3,7
7,3
4,7
1,3
4,7
2,3
4,7
3,3
4,7
4,3
4,7
5,3
4,7
6,3
4,7
7,3
5,7
1,3
5,7
2,3
5,7
3,3
5,7
4,3
5,7
5,3
5,7
6,3
5,7
7,3
6,7
1,3
6,7
2,3
6,7
3,3
6,7
4,3
6,7
5,3
6,7
6,3
6,7
7,3
7,7
1,3
7,7
2,3
7,7
3,3
7,7
4,3
7,7
5,3
7,7
6,3
7,7
7,3
S4 1,7
1,4
1,7
2,4
1,7
3,4
1,7
4,4
1,7
5,4
1,7
6,4
1,7
7,4
2,7
1,4
2,7
2,4
2,7
3,4
2,7
4,4
2,7
5,4
2,7
6,4
2,7
7,4
3,7
1,4
3,7
2,4
3,7
3,4
3,7
4,4
3,7
5,4
3,7
6,4
3,7
7,4
4,7
1,4
4,7
2,4
4,7
3,4
4,7
4,4
4,7
5,4
4,7
6,4
4,7
7,4
5,7
1,4
5,7
2,4
5,7
3,4
5,7
4,4
5,7
5,4
5,7
6,4
5,7
7,4
6,7
1,4
6,7
2,4
6,7
3,4
6,7
4,4
6,7
5,4
6,7
6,4
6,7
7,4
7,7
1,4
7,7
2,4
7,7
3,4
7,7
4,4
7,7
5,4
7,7
6,4
7,7
7,4
S5 1,7
1,5
1,7
2,5
1,7
3,5
1,7
4,5
1,7
5,5
1,7
6,5
1,7
7,5
2,7
1,5
2,7
2,5
2,7
3,5
2,7
4,5
2,7
5,5
2,7
6,5
2,7
7,5
3,7
1,5
3,7
2,5
3,7
3,5
3,7
4,5
3,7
5,5
3,7
6,5
3,7
7,5
4,7
1,5
4,7
2,5
4,7
3,5
4,7
4,5
4,7
5,5
4,7
6,5
4,7
7,5
5,7
1,5
5,7
2,5
5,7
3,5
5,7
4,5
5,7
5,5
5,7
6,5
5,7
7,5
6,7
1,5
6,7
2,5
6,7
3,5
6,7
4,5
6,7
5,5
6,7
6,5
6,7
7,5
7,7
1,5
7,7
2,5
7,7
3,5
7,7
4,5
7,7
5,5
7,7
6,5
7,7
7,5
S6 1,7
1,6
1,7
2,6
1,7
3,6
1,7
4,6
1,7
5,6
1,7
6,6
1,7
7,6
2,7
1,6
2,7
2,6
2,7
3,6
2,7
4,6
2,7
5,6
2,7
6,6
2,7
7,6
3,7
1,6
3,7
2,6
3,7
3,6
3,7
4,6
3,7
5,6
3,7
6,6
3,7
7,6
4,7
1,6
4,7
2,6
4,7
3,6
4,7
4,6
4,7
5,6
4,7
6,6
4,7
7,6
5,7
1,6
5,7
2,6
5,7
3,6
5,7
4,6
5,7
5,6
5,7
6,6
5,7
7,6
6,7
1,6
6,7
2,6
6,7
3,6
6,7
4,6
6,7
5,6
6,7
6,6
6,7
7,6
7,7
1,6
7,7
2,6
7,7
3,6
7,7
4,6
7,7
5,6
7,7
6,6
7,7
7,6
S7 1,7
1,7
1,7
2,7
1,7
3,7
1,7
4,7
1,7
5,7
1,7
6,7
1,7
7,7
2,7
1,7
2,7
2,7
2,7
3,7
2,7
4,7
2,7
5,7
2,7
6,7
2,7
7,7
3,7
1,7
3,7
2,7
3,7
3,7
3,7
4,7
3,7
5,7
3,7
6,7
3,7
7,7
4,7
1,7
4,7
2,7
4,7
3,7
4,7
4,7
4,7
5,7
4,7
6,7
4,7
7,7
5,7
1,7
5,7
2,7
5,7
3,7
5,7
4,7
5,7
5,7
5,7
6,7
5,7
7,7
6,7
1,7
6,7
2,7
6,7
3,7
6,7
4,7
6,7
5,7
6,7
6,7
6,7
7,7
7,7
1,7
7,7
2,7
7,7
3,7
7,7
4,7
7,7
5,7
7,7
6,7
7,7
7,7

The upper pair of numbers are the quadrant X,Y coordinates.
The lower pair of numbers are the sector X,Y coordinates.

In the game, objects are represented thusly on the long-range scanner ("galaxy display"):

1st number = number of aliens         in quadrant
2nd number = number of space stations in quadrant
3rd number = number of stars          in quadrant

In the game, objects are represented thusly on the short-range scanner:

<O> = position of your ship
+++ = position of enemy ship (alien)
 H  = position of space station
 *  = position of star

These issues are known, under Ami/WinArcadia 34.01, at least. The reasons for these issues have not yet been investigated.

For the PIPBUG version only:

The energy display can be incorrect (eg. "08VU", "15\\", etc.).
When firing phasors, the user input prompts are not shown.

For the BINBUG versions only:

The galaxy display is prepended with junk.

Commands are:

0: Move (specify a direction ("course") and distance ("warp factor") in sectors)
1: Short range scan & status
2: Long range scan ("galaxy display")
3: Transfer energy to shield ("shield energy transfer")
4: Fire phasor (specify energy)
5: Fire torpedo (specify direction)

Directions are:

06 05 04 03 02
07 01
08 00
09 15
10 11 12 13 14

Game variables are as follows. All are numbers in ASCII format ('0'..'9') (eg. the value 1234 is represented as $31 $32 $33 $34):

Address(es) Description Range
$60C..$60D stardate (ie. time remaining) 00..99
$62B quadrant X 1..7
$62D quadrant Y 1..7
$63A sector X 1..7
$63C sector Y 1..7
$649..$64C energy 0000..9999
$659 torpedos 0..9
$666..$669 shields 0000..9999
$917..$947 aliens in each of the 49 quadrants 0..9
$948..$978 space stations in each of the 49 quadrants 0..9
$979..$9A9 stars in each of the 49 quadrants 0..9

Binary Floating Point Routines (Application Note AS57):

The program's prompt is corrupt (maybe the emulated teletype is not ready for it).
Each pair of hex digits is not shown until it has been completely input.
The spaces around operators are added automatically by the program rather than by the user.
The start address determines the rounding mode, as follows:

G6A6 will run with rounding.
G6AA will run without rounding.

Give 8 hex digits, then an operator, then another 8 hex digits, then =
Supported operators are +, -, * and : (which is division).

Biorhythm:

Dates are expected to be in dd/mm/yy format.
Invalid dates will cause the program to hang.

Bit Echo:

Prints flashing garbage after each letter, for some reason.

Cricket:

Doesn't randomize very well, for some reason.

DG640 Driver:

To get the flashing cursor, you need PIPBUG (not BINBUG).

ETI-685 Memory Tester:

This expects BINBUG 6.1. It is used as follows:

G440

where and are the start and end addresses, eg.:

G440 1000 1FFF

Funny Farm Races:

1. At the "PLAYER 1-" prompt:
Type in the name of the first player and press ENTER.

2. For each additional player you want to add:
Press P. The machine will say "PLAYER 2-" (or whatever).
Type in the name of the player and then press ENTER.

3. Press ENTER to begin.

4. For each player:
The machine will ask "BET?".
For each bet you want to place:
a. Press Y and then press ENTER.
b. The machine will ask "DOG NO?".
c. Press the number (0..9) of your preferred dog and then press ENTER.
d. The machine will ask "HOW MUCH?".
Press N when this player has placed all their bets.

5. Watch the race and then press ENTER.

6. Go to 4.

Furnace:

This program requires extra hardware (eg. various motors), which is not emulated by Ami/WinPIPBUG. Although it will load and run, it will not do anything useful on the emulators, and, intentionally, does not produce output on the screen. Also, it expects a data table (starting at !6000), which is not present.

Guessing Game (machine code version):

"When called, the program will wait until you enter any character. It will then generate a random number between 1 and 99, which you must guess. Starting address is $0440."

STRT = $440 code
INPT = $493 code
PRNT = $4A6 code
MSAG = $4B1 data

HexCal aka HexCalc:

Enter source address (2 hex digits).
/ appears.
Enter destination address (2 hex digits).
= and result appears.
The first digit of each pair entered is not echoed to the display until the second digit has been input.
Result is the relative offset (ie. the distance between the addresses). Eg.:

01/02=01
03/04=7F
05/05=00
20/30=10

PAIR equ $45E
gosub CRLF;
for (r1 = 3; r1 >= 1; r1--)
{
PAIR = BINOUT();
COUT('/');
PAIR = (BINOUT() - PAIR) & $7F;
COUT('=');
BOUT(PAIR); // Byte output in hex
COUT(' ');
}
goto $3F00;
BINOUT: ;$46D
// Input two hex chars and output in hex
*($476) = BIN(); // Input two hex chars and form as byte
BOUT(*($476)); // Byte output in hex
return *($476);

Hunt the Wumpus:

Here is the map:

             ----0----
            /   / \   \
         --2---5---8---B--
        /  |   |   |   |  \
(E)<---1---3---6---9---C---E--->(1)
        \  |   |   |   |  /
         --4---7---A---D--
            \   \ /   /
             ----F----

Rooms 1 and E are connected.

Room 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 2 5 8 B
1 2 3 4 E
2 0 1 3 5
3 1 2 4 6
4 1 3 7 F
5 0 2 6 8
6 3 5 7 9
7 4 6 A F
8 0 5 9 B
9 6 8 A C
A 7 9 D F
B 0 8 C E
C 9 B D E
D A C E F
E 1 B C D
F 4 7 A D

Life-MachineCode:

"Life is a matrix game concerned with the life, death and birth of cells. Imagine each cell to be in a two-dimensional linear matrix, such that each cell location has eight possible neighbours, as shown:

1 2 3
4 X 5
6 7 8

The rules of cell life, death and birth are as follows:

1. A live cell will survive if it has two or three live neighbours.
2. A live cell will die if it has less than two or more than three live neighbours.
3. A birth in an empty cell will occur if it has exactly three live neighbours.
4. Births and deaths take place simultaneously.

To work with practical terminals the program operates with a limited size matrix, but makes it effectively "infinite" by having "wrap around" from side to side and from top to bottom.
In our version of Life, live cells are represented by Os, and dead or empty cells as blanks. The program starts with an initial pattern (fed in by the player), and calculates the new patterns "generation by generation".
The 32*16 versions are intended for use with the Low Cost VDU of EA February and April 1978. The 32*24 versions are intended for terminals such as the EME-1 VDU, described in the EA January and February 1977 issues.
To use the program, type:

GC00<CR>

and then switch to the appropriate baud rate (110 or 300 baud). Then type a U for 110 baud operation, or a Y for 300 baud operation.
The program will respond with the word "LIFE", followed by the prompt character ":".
If you respond with "N", the program will expect a new matrix to be supplied. The program will echo the N, followed by a carriage return and line feed. A pattern may then be written in (or "seeded") by using the space bar for blanks (these are printed as dots), Os for live cells, and line feeds (LF) [Ctrl+J in Ami/WinArcadia] for new lines.
Blanks are not required on the right hand side of the pattern. Carriage return (CR) will permit overwriting of a line, allowing error correction. Once your pattern is complete, use LFs if necessary to advance to the bottom of the matrix.
Once the pattern is completed, the program will reprint it, and give the prompt sign again. If you now respond with a Gxx, $xx generations will be evolved, with a printout after the last generation. G00 will produce printout after 256 generations, while G01 will produce a printout after only one generation. And so on...
Immediately after you have typed in this command, the program will respond with a message such as <15S, to indicate that in less than 15 seconds it will print out the result of the Gxx instruction. After printing the result the new generation count and prompt will appear at the bottom left hand corner of the screen. This may overwrite live cells, so try and keep your patterns in the centre of the screen (patterns to the right will wrap around to the left).
The remaining instruction is P, which causes the program to print out the existing matrix. The instruction is not used a great deal.
This is the result of a simple pattern. This stabilises after four generations, and then continues forever unchanged:

..O. GENERATION 1
OOO.
....

..O. GENERATION 2
.OO.
.O..

.OO. GENERATION 3
.OO.
.OO.

.OO. GENERATION 4
O..O
.OO.

.OO. GENERATION 5
O..O
.OO.

One of the most interesting and simple patterns has been named the "Glider". The seed for this is shown below:

.O.
..O
OOO

If you are running Life at 1200 baud, it is better to use the autoprint version, which prints out after every generation, and stops automatically when the pattern stabilises.
Simply feed in a starting pattern (using the N command), and sit back and watch. The program will continue until a stable pattern is achieved, at which time it will stop. Note, however, that it cannot detect recurring cyclical patterns, so watch out for these. To stop them, you will have to use the reset facility of the 2650."

For 110 baud, you just need to press U, as documented.
For 300 baud, you need to press U (not Y), then ENTER, contrary to the documentation.
Then press N for a new field and set it up with Os and spaces, using Ctrl-J repeatedly to move down.

$C00..$C59: baud rate initialization routine?
$C26: LIFECRLF
$C39: LIFECOUT
$C5A: LIFECHIN
$C76..$EEC: Life game code
$EED..$F54: Life game variables

LIFECOUT has the following side effects when called:
PSL: CC = eq;
PSL: primary register bank (r1..r3) is always selected
PSU: Flag pin is always set
r1 = *(DATABUS);
r0 = r6 = 0;
You should not call it when SP > 4 (you need one level of stack for LIFECOUT's return address, another level for LIFEDELAY's return address, and another level for LIFEDELAY_ALT's return address.

LIFECHIN has the following side effects when called:
PSL: CC = gt;
PSL: primary register bank (r1..r3) is always selected
PSL: With Carry bit is always clear
r0 = r4 = return code (1..127)
r5 = r6 = 0;
You should not call it when SP > 4 (you need one level of stack for LIFECHIN's return address, another level for LIFEDELAY's return address, and another level for LIFEDELAY_ALT's return address.

Linearization (Linearisatie):

This program requires extra hardware, eg. light pen, which is not supported by Ami/WinPIPBUG. Although it will load and run, it will not do anything useful on the emulators, and, apparently intentionally, does not produce output on the screen.

Lunar Lander (machine code version):

F = Fuel (out of 40)
V = Velocity (- is down (towards surface), + is up (away from surface))
D = Distance from surface (- is underground, + is above ground)
B = Burn

The * is a graphical indicator of your distance from the surface.
You must give a 2-digit burn each turn. Neither digit is displayed until both have been entered.

Lunar Lander (2650 Micro BASIC version):

The pseudocode is:

input fuel (F), velocity (V), height (D)
V = -V; // convert velocity from "down" (towards) to "up" (away from)
for (;;)
{   do
    {   print fuel (F), velocity (V), height (D)
        W = D; // ceiling = height
        input burn (T)
        D += V; // move lander
        F -= T; // deduct burn from fuel
        if   (D > 150) G=-2; // G is the
        elif (D > 100) G=-3; // gravity factor
        elif (D >  50) G=-4; // (stronger closer
        elif (D <  50) G=-5; // to surface)
        else
        {   assert(D == 50);
            G (gravity factor) is uninitialized and will retain its
            value from the previous turn or game (or zero for first run).
        }
        V += T + G; // velocity += burn + gravity factor (applied next turn)
        K = -D * 100; // depth of crater = height below ground * 100
    } while (D > 0 && D <= W); // still above ground but at or below ceiling
    if   (D >  W) escaped gravity, game over
    elif (D <  0) new crater, game over
    else
    {   assert(D == 0);
        if   (V >   0) moving away, continue game
        elif (V ==  0) perfect, game over
        elif (V >  -5) not bad, game over
        elif (V > -10) damage sustained, game over
        elif (V < -10) lander destroyed, game over
        else
        {   assert(V == -10);
            no message given, game over
            (result should really be damage sustained or lander destroyed)
}   }   }

Your burn will not take effect until the turn after you make it.
Any movement away from the moon will be considered to have escaped gravity, regardless of how near you are to it and how much fuel you have.
The weight of your fuel is not taken into consideration by the game. Gravity is taken into consideration but not in an accurate way.
A good landing must have a height of exactly zero and a velocity (for next turn) towards the moon as small as possible.
An example of an easy perfect (if unrealistic) landing would be to start with 6 (or more) units of fuel, velocity down of 1, height of 1, burn of 6. The game changes your height to 1 to 0, and your velocity up from -1 to 0 (it adds the burn of 6 and the gravity factor of -5 to it).

Mastermind, Revised Mastermind:

You need to use Ctrl-L instead of ENTER after each line of input.

Maths Demonstration:

"This program provides the functions of a simple, 3-function calculator. It will multiply, add or subtract two single digit decimal numbers. Normal plus, minus and equals signs are used, with an asterisk symbol for multiplication. Starts at $0440."

Note that the listing is self-contradictory (the machine code bytes do not match the assembly source code).

STRT:
*(MOD) = ADDZ r3;
r3 = SUB1();
for (;;)
{ r0 = CHIN();
  if   (r0 == '+') goto PLUS;
  elif (r0 == '-') goto SUBT;
  elif (r0 == '*') goto MULT;
}

SUBT:
*(MOD) = SUBZ r3;
PLUS: // $45C
gosub COUT(r0); // print operation symbol ('+' or '-')
r2 = r3; // 1st argument
r3 = SUB1(); // 2nd argument
r0 = r2; // 1st argument
MOD:
r0 += r3, or r0 -= r3, depending on the desired operation
if (r0 < 0)
{ r0 = r3 - r2;
  *(A1) = '-'; // store '-' as 1st character
  r0 |= $30; // format for display
  *(A2) = r0; // store r0 as 2nd character
} elif (r0 >= 10)
{ *(A1) = '1'; // store '1' as 1st character
  r0 -= 10;
  r0 |= $30; // format for display
  *(A2) = r0; // store r0 as 2nd character
} else
{ r0 |= $30; // format for display
  *(A1) = r0; // store as 1st character
  r0 = NUL;
  *(A2) = r0 [NUL]; // store as 2nd character
}
goto ZEND;

MULT: // $48E
gosub COUT(r0); // print operation symbol ('*')
r2 = r3; // 1st argument
r3 = SUB1(); // 2nd argument
r0 = 0;
while (r2 != 0)
{ r0 += r3;
  r2--;
}
while (r0 >= 10)
{ r0 -= 10;
  r2++;
}
r2 |= $30; // format for display
*(A1) = r2;
r0 |= $30; // format for display
*(A2) = r0;
goto ZEND;

SUB1:
do
{ r0 = CHIN();
  clear With Carry and COMpare bits
} while (r0 < '0' || r0 > '9');
r3 = r0;
gosub COUT(r0);
r3 &= $0F; // remove display formatting
return r3;

ZEND:
r1 = 0;
while (*(MSAG + ++r1) != 0)
{ COUT(r0);
}
gosub CRLF;
goto STRT;

Memory Test:

You use the program as follows:

G48F <start-address> <end-address> <loops>

where <loops> is "01".."7F". ("80".."$FF" give infinite tests.) Eg.:

G48F 0500 3FFF 7F

If there is no resulting output other than linefeeds (just goes back to the "*" prompt), this indicates success.
Errors are as follows:

Z or S mean that cleared (zeroed) memory did not read back as $00.
W means that a single bit of memory (eg. $10) did not read back correctly.
L means that set memory did not read back as $FF.

The address of the error then follows the error code.

Message Editor:

"Upon being called, this program will give a prompt character, and await a command character. Commands:

T allows a message to be entered
C allows a stored message to be checked
R allows it to be repeated until the CPU is reset

In text input mode, the DEL character acts as a destructive backspace for correcting errors. To return to command mode, type an Esc.
If the message being stored is too long for the buffer, an F will be displayed. Starts at $0440."

MicroByte Adventure:

Due to its length, this has now been split off into a separate document.

MicroWorld BASIC:

Note that this is *not* byte-for-byte identical to the official PIPBUG release of MicroWorld BASIC, as evidenced by the fact that eg. the official BINBUG patch (aka "personality module") for it will not work. The available dump was originally for PIPBUG, then was ported to PHUNSY, then was ported back to PIPBUG.
The first command you should issue is OLD. Then you can RUN or LIST the program.

Mini-Disassembler:

You must type 6 consecutive hex digits. These are not echoed to the screen (except that Ami/WinArcadia do this for you). The first 4 digits are the starting address (including any leading zeroes) and the last 2 digits are the least significant byte of the ending address (the most significant byte is always the same as that of the starting address). Eg.:

0440FF

will disassemble $440..$4FF.
Note that the mnemonics used are not always standard Signetics. Eg.:

HLT = HALT
LPU = LPSU
LPL = LPSL
PPU = PPSU
PPL = PPSL

To disassemble another region, type:

G440

at the command prompt ("*"). If you get another "*", retry; otherwise, now enter a new 6-digit address range.
There are bugs in the published program listing, causing incorrect disassembly of some instructions. There is a fixed version in the Enhancements Pack.
There is also the following unfixed bug: Some situations (eg. 3-byte instruction at $1FE..$200 when range argument was "0100FF") result in the mini-disassembler not detecting the end of the range and instead wrapping back around.

Music:

"The "Music" program occupies locations $4A0 to $5D3, and uses PIPBUG routines. It contains absolute addresses, and is not easily relocated. The music is generated at the flag output of the 2650, and some form of audio transducer is required. This can simply be an audio amplifier and speaker, connected via a suitable attenuator, to the buffered flag output of the CPU.
Monotonic musical notes are generated by pulsing the flag output at suitable rates, with the program "reading" the music from a section of memory. The timing of the music is determined by a time value called "UNIT", which is an even number of up to 15 bits, such that $5160 is about 1/32 of a second.
Each note is specified by two bytes. The first byte represents the number of UNITs that the note will last: $01 gives a duration of 1 UNIT, while $00 gives 256 UNITs, or 8 seconds with a UNIT value of $5160.
The second byte is split into three fields. The most significant bit, bit 7, indicates either a note (%0) or a rest (%1). The next three bits, bits 4, 5 and 6, specify the octave. %111 represents the top octave, while %000 represents the lowest. In practice, the three lowest octaves are not usable, giving a range of only five octaves.
The remaining four bits in the second byte represent the note within the octave. The first note in any octave is E, represented by $0, while the last note is D# (D sharp), represented by $B.
For rests, bits 6 to 0 are not used, so all rests become $80.
It is best to start and end all programs (tunes!) with $80 $80, a long rest, to separate the music from the noises PIPBUG makes while communicating with the terminal. To signify the end of a tune, insert $02 $FF after the long rest.
"Yankee Doodle" occupies locations $5D4 to $6B7, and requires a unit value of $2800, while "Bach" occupies locations $6B8 to $7A3, and requires a unit value of $7000.
To run the program, type:

G58C [<address of first note>] [<value of UNIT>] <CR>

The last two parameters are optional. If they are not given, the program will use the previous values. Thus, to play "Yankee Doodle", type:

G58C 5D4 2800<CR>

and for "Bach", type:

G58C 6B8 7000<CR> "

These print garbage while playing, for some reason.

Note Very low Low Middle High Very high
E $30 $40 $50 $60 $70
F $31 $41 $51 $61 $71
F#/Gb $32 $42 $52 $62 $72
G $33 $43 $53 $63 $73
G#/Ab $34 $44 $54 $64 $74
A $35 $45 $55 $65 $75
A#/Bb $36 $46 $56 $66 $76
B $37 $47 $57 $67 $77
C $38 $48 $58 $68 $78
C#/Db $39 $49 $59 $69 $79
D $3A $4A $5A $6A $7A
D#/Eb $3B $4B $5B $6B $7B
Rest $80 $80 $80 $80 $80

For the purposes of the above table, each "octave" is assumed to begin at E.
Note that there is a short delay for Yankee Doodle, and a long delay for Bach, before they actually begin to play the song.

Nim:

"The game of Nim: starting with 23 you and the program take turns at subtracting a number from 1 to 3. The one that leaves 1 after their move wins. Starting address is $0440."
The winning strategy is as follows:
You will have a turn where there are 6..8 widgets. Taking 1..3 widgets accordingly on this turn will leave 5 widgets.
The computer must then take 1..3 widgets, leaving 2..4 widgets.
You should then take 1..3 widgets accordingly, to leave 1 widget and therefore win.
Ie.:
If 23 remaining on your turn, take 2 leaving 21.
If 22 remaining on your turn, take 1 leaving 21.
If 21 remaining on your turn, take 3 leaving 18 but you are in danger.
If 20 remaining on your turn, take 3 leaving 17.
If 19 remaining on your turn, take 2 leaving 17.
If 18 remaining on your turn, take 1 leaving 17.
If 17 remaining on your turn, take 3 leaving 14 but you are in danger.
If 16 remaining on your turn, take 3 leaving 13.
If 15 remaining on your turn, take 2 leaving 13.
If 14 remaining on your turn, take 1 leaving 13.
If 13 remaining on your turn, take 3 leaving 10 but you are in danger.
If 12 remaining on your turn, take 3 leaving 9.
If 11 remaining on your turn, take 2 leaving 9.
If 10 remaining on your turn, take 1 leaving 9.
If 9 remaining on your turn, you will eventually lose.
If 8 remaining on your turn, take 3 leaving 5.
If 7 remaining on your turn, take 2 leaving 5.
If 6 remaining on your turn, take 1 leaving 5.
If 5 remaining on your turn, you will soon lose.
If 4 remaining on your turn, take 3 leaving 1 and winning.
If 3 remaining on your turn, take 2 leaving 1 and winning.
If 2 remaining on your turn, take 1 leaving 1 and winning.
If 1 remaining on your turn, you have already lost.

Number Game:

The ! prompt means to hit ENTER (it presumably uses this user-dependant delay for randomization).
Numbers up to 65535 are possible.
The target number is stored at $486..$487 in little-endian format.
The number of turns taken is stored at $4A8.

On Screen Clock:

The original published version has a bug at $505 ($00 should be $0C). There is a fixed version in the Games Pack.

This program needs the starting time to be poked into memory and registers before execution. Pause the machine and then set the time like this before starting at $500:
*($573) = tens of hours
r3 = ones of hours
r2 = tens of minutes
r1 = ones of minutes
All values are stored in ASCII format. Eg. for '5', use $35 (ASCII '5'), not $05.
Eg. use this sequence of debugger commands for 11:58:

P
E $573 '1'
E R3 '1'
E R2 '5'
E R1 '8'
J $500
P

When the time reaches 13:00, it will reset back to 01:00 (ie. it is a 12-hour rather than a 24-hour clock).

Othello (Reversi) 2.0:

Input must be in Y,X (row,col) format.

Printer Routines, Trace Routine:

Of course, the provided binaries do nothing (ie. do not "work") by themselves, as they are only subroutines. See the relevant magazine articles for more information about how to use them in your own programs.

Reaction Timer:

You have to react when the cursor is in the leftmost column.

Relative Branch Calculator:

Enter source address (4 hex digits).
Enter destination address (4 hex digits), then "=" appears, and tells you the relative offset (or "?" if out of range).
The first digit of each pair entered is not echoed to the display until the second digit has been input.

Rotate:

"The computer generates a 4*4 array of the first 16 letters of the alphabet, arranged in a random order. The object of the game is to rearrange the array into the following form:

A B C D
E F G H
I J K L
M N O P

The array can only be rearranged by rotating [2*2] blocks of four letters clockwise. The block to be rotated is specified by the letter in its top left hand corner. It is invalid to try to rotate by calling letters on either the bottom row or the right hand column of the array.
If a mistake is made, it can be corrected once between valid rotations. Any two adjacent letters can be exchanged, with the proviso that only one exchange is permitted. When the required pattern has been achieved, or when the game is aborted, the program will print out the number of moves used.
The program occupies locations $440 to $5C7, and uses routines from PIPBUG. To run the program, type:

G440<CR>

and the computer will respond with "PRESS ANY KEY". Once this has been done, a random pattern will be generated and printed, and the prompt message "ROTATE:" given.
Here is a sample printout. The "Z" command was used to terminate the game.

*G440

PRESS ANY KEY

OJMD
EPLI
BFHK
CNAG

ROTATE: F

OJMD
EPLI
BNFK
CAHG

ROTATE: N

OJMD
EFLI
BANK
CHFG

ROTATE: N

OJMD
EPLI
BAFN
CHGK

ROTATE: F

OJMD
EPLI
BAGF
CHKN

ROTATE: EXCHANGE: L,M

OJLD
EPMI
BAGF
CHKN

ROTATE: P

OJLD
EAPI
BGMF
CHKN

ROTATE: M

OJLD
EAPI
BGKM
CHNF

ROTATE: CANCEL

OJLD
EAPI
GMNF
CHKN

ROTATE: G

OJLD
EAPI
BHGF
CKMN

ROTATE: YOU TOOK 07 MOVES

If you wish to rotate a particular block, type the letter in the top left hand corner of that block. If you wish to cancel a move, type carriage return, and the program will respond with "CANCEL", and then reprint the last but one block.
If you wish to exchange two adjacent letters, type X. The program will respond with "EXCHANGE:", and expect you to type in the two desired letters. If you cannot solve a particular pattern, type Z, and this will abort the game.
An average pattern, with only one exchange permitted, should take between 25 and 30 moves. Early attempts may take more."
Note that the game does not enforce the rule about only permitting one exchange per game.
The unpatched version (ie. as found in the Games Pack) will not work on Ami/WinArcadia. You should use the patched version (ie. as found in the Enhancements Pack).

RYTMON:

This program does not echo your input to the screen.

Solitaire:

This game expects a display with more than 16 rows.

Star Shoot:

The objective is to reach the end configuration shown below in as few moves as possible, by shooting stars. Each move consists of a digit 1-9 corresponding to the position of the star to shoot:

No. Start End
123 ... ***
456 .*. *.*
789 ... ***

The only valid first move is 5. Shots have these results:

1 2 3 4 5 6 7 8 9
.!-
!!-
---
!.!
---
---
-!.
-!!
---
!--
.--
!--
-!-
!.!
-!-
--!
--.
--!
---
!!-
.!-
---
---
!.!
---
-!!
-!.

. means the star becomes a dot
! means the star or dot becomes a dot or star (respectively).
- are unchanged. It is possible to reach a configuration with zero stars and thus no possible moves, losing the game.

Time:

This program uses cycle counting techniques. Under Ami/WinArcadia 8.41, it appears to run too fast (ie. the "game" time goes faster than the emulator time).
The two most likely possibilities would be:
(a) the program was not originally tested and tuned to a sufficient precision by its programmer; and/or
(b) the real machine is spending a certain number of cycles servicing interrupts (which don't occur in the emulator).
Of course, since it starts counting from minute 1 rather than minute 0, the time as shown in this program will be minute later than that shown by the emulator.
When this program says "0100" (ie. "one hour"), emulator time should be approximately "00:59:00.00" (though it would be fair to allow a few milliseconds for initialization). However, emulator time when this event occurs is actually only "00:58:47.20". So this program is 12.80 seconds fast over that 59 minutes. (Or, conversely, you could suggest that the emulator is slow by that amount, or a combination of both.)
Such accuracy is approximately 1:276.5625 (slightly worse than 1 second fast per 5 minutes), which makes this program rather useless over lengthy periods.

Vector Magnetometer:

This program expects extra input (eg. various sensors) and output (eg. pitch and roll indicators) hardware, which is not supported by Ami/WinPIPBUG. (The LED display, used for output of heading data, is supported.) Although it will load and run, it will not do anything useful on the emulators, and, intentionally, does not produce output on the main screen (only via the LED display).

Signetics Instructor 50

This machine is a "microprocessor development board" aka "trainer".
The start address for user programs can be specified at runtime by the user as with eg. the Elektor TV Games Computer.
BIOS calls are made via eg. ZBSR *DISPLY; there is a zero page jump table at $1FE6..$1FFF.

Hardware equates/memory map

Region Size Basic version Expanded version
$0000..$01FF 512 bytes user RAM user RAM
$0200..$0FFE 3582 bytes unused expansion RAM
$0FFF 1 byte I/O port I/O port
$1000..$177F 1920 bytes unused unused
$1780..$17BF 64 bytes user RAM user RAM
$17C0..$17FF 64 bytes monitor RAM monitor RAM
$1800..$1FFF 2K monitor ROM monitor ROM
$2000..$7FFF 24K unused expansion RAM

I/O Devices

The 28-key keyboard is as follows:

------Left Keypad------ ---------Right Keypad----------
.SENS.. .WCAS.. .BKPT.. ...C... ...D... ...E... ...F...
..INT.. .RCAS.. ..REG.. ...8... ...9... ...A... ...B...
..MON.. .STEP.. ..MEM.. ...4... ...5... ...6... ...7...
..RST.. ..RUN.. ENT NXT ...0... ...1... ...2... ...3...

MON, RST and ENT NXT are white on orange. All other keys are white on blue. There are no paddles.

8-digit 8-segment LED display (red on black):

Each of the 8 digits is divided into 8 segments, as shown: +0+ The + don't really exist, therefore it is really like this: 5 1 +6+ 0 4 2 5 1 +3+ 7 6 4 2 3 7 Eg. the bottom segment is controlled by bit 3 (so, $08 would set it, $00 would clear it). The display is controllable at the segment level (ie. you can get 256 combinations) via direct hardware access (ie. bypassing USE BIOS functions and using the WRTE instruction), using the bit numbers listed above.

"PARALLEL I/O" section, consisting of:

8 glow LEDs ("7".."0");
8 corresponding toggle switches (unlabelled);
Toggle switch with 3 possible positions (up, middle and down, corresponding to "MEMORY $0FFF", "EXTENDED I/O PORT $07" and "NON-EXT DATA PORT", respectively). "The default is probably EXTENDED I/O PORT $07."

In NON-EXTENDED I/O mode:

REDD,rn to read from the toggle switches
WRTD,rn to write to the glow LEDs

In EXTENDED I/O mode:

REDE,rn $07 to read from the toggle switches
WRTE,rn $07 to write to the glow LEDs

In MEMORY MAPPED I/O mode:

LODA,rn $0FFF to read from the toggle switches
STRA,rn $0FFF to write to the glow LEDs

"RUN" glow LED:

"It appears to be on all the time. It is on in monitor mode, during stepping, and remains on at breakpoints. It will turn off after the processor executes a HALT ($40) instruction. It won't turn back on again until you hit MON, RST, in that order. You can't just break back into monitor mode after hitting a HALT instruction. Hitting MON, RST somehow brings the machine back to life and into monitor mode; otherwise the machine is dark." - Tyler Whitney.

"FLAG" glow LED, showing the state of the Flag pin of the CPU.

"INTERRUPT" toggle switch: "DIRECT" or "INDIRECT":

When an interrupt is generated/received, the Instructor 50 writes $07 or $87 to the data bus, depending on the position of the DIRECT/INDIRECT INTERRUPT switch. Then it does a ZBSR $07 or ZBSR *$07, as appropriate.

"INTERRUPT SELECTOR" jumper (on underside of machine):

"A.C. LINE" (ie. 50Hz) or
"KEYBOARD" (ie. INT key).
"The default is probably keyboard."

S-100 bus (at rear) (not emulated).

"CASSETTE" jacks: "PHONE" and "MIC":

The cassette subsystem is somewhat like that of the Elektor TV Games Computer, but uses 6 pulses for a "0" and 3 pulses for a "1", except that 3 extra pulses are appended to the last bit of each byte (giving 6+3=9 pulses for a "0" or 3+3=6 pulses for a "1").
As with the Elektor, the rate at which bits (and thus bytes) can be loaded/saved depends the actual data payload (ie. depends on whether they are "0"s or "1"s).
Port $F8 bit 4 is FREQ. The BIOS is flipping that at a constant regular rate (at least while recording).
Port $F8 bit 3 is ENV. That is high whilever we are actually recording a bit, and goes low between bits. It stays high for longer for a "0" bit than for a "1" bit.
So whilever ENV is high, we just write the current status of the FREQ bit to the tape, and whilever ENV is low, we just write silence.
It gets NANDed, so if ENV and FREQ are both high, we are low, and otherwise, we are high.
It sets port $F8 to $10 and $18 while writing, and $00 at rest.
During playback, the Sense bit is set directly from the tape based on whether above or below the zero-crossing point.

USE BIOS

USE is an acronym for "User System Executive".

"When in Monitor mode, pressing anything on the hex keypad generates Error 2 on the real machine. On the control keypad, you can hit most keys with impunity. Hitting STEP while in monitor mode generates Error 9 on the real machine." - Tyler Whitney.
Error 2 means: "Restricted command."
Error 9 means: "Next instruction is in the MONITOR area." Ie. if the STEP button is pressed and the next instruction would be in the monitor area, it will be reported by the appearance of Error 9.

The USRDSP (USeR DiSPlay) command is used as follows:

R0: Return code.
R1..R2: Pointer to byte preceding string.
R3: $00/$01/$80. $01 returns immediately. The USE BIOS only allows character-level (ie. glyph-level) access. The character set is as follows:

$00 $01 $02 $03 $04 $05 $06 $07 $08 $09 $0A $0B $0C $0D $0E $0F $10 $11 $12 $13 $14 $15 $16 $17 $18 $19 $1A $1B $1C
0 or O 1 or I 2 3 4 5 6 7 8 9 A b. C d. E F P L U r H o = space J - . Y n
###..########.####################.. ###..# ##########..#.#...#.#...........#...... #.#...
# #. #. #. ## ## .# .. ## ## ## ## . # .. # # .# .# ## .# #. .# #. .. .. .. #. .. . # #. .
#.#..################..############# #..### ##########..#.#############.....####... ######
# #. ## .. #. #. ## #. ## #. ## ## # # .# # # .# .# .# .# ## .# ## #. .. .. #. .. . . ## #
###..#######..#######..####..##.#### ####### #####..#..#######..#.#######...###...... #####.#

Note the trailing dots for "b." and "d.".
Available letters: ABCDEFGHIJLNOPRSUY
Unavailable letters: KMQTVWXZ

Game Help

Beat the Odds:

You can make a bet on any of the following results:

Event Odds
0 lamps lit 250:1
1 lamp lit 15:1
2 lamps lit 7:1
3 lamps lit 7:2 (3.5:1)
4 lamps lit 5:2 (2.5:1)
5 lamps lit 7:2 (3.5:1)
6 lamps lit 7:1
7 lamps lit 15:1
8 lamps lit 250:1
0..1 lamps lit 25:1
2..3 lamps lit 2:1
4..5 lamps lit 1:1
6..8 lamps lit 6:1
0..2 lamps lit 11:2 (5.5:1)
3..5 lamps lit 2:5 (1:10)
6..8 lamps lit 11:2 (5.5:1)
Specific 2-digit number 250:1
Specific MS digit 15:1
Specific LS digit 15:1
Any one of 5 specified 2-digit numbers 50:1
Any one of 10 specified 2-digit numbers 25:1

Note that in the table above, the bet "6..8 lamps lit" is listed twice, with different odds. This is authentic to the original Signetics documentation.

This game is intended to be played by multiple humans using real money. One player would act as the "house" (ie. banker/dealer) and call for bets, take and record wagers, operate the computer, and pay winners according to the above odds. The computer is used merely as a randomizer. There is no logic in the game for showing odds, taking bets, ascertaining winners, paying winners, etc.

Dice with Display:

The rightmost parallel I/O switch (bit 0) needs to be on, otherwise the 7-segment LED digit area of the display will never change.
The program relies on random data in uninitialized RAM for its random number generation, hence you should ensure that "Settings|Emulator| Randomize memory?" is on before loading the game.

Game of Memories:

This is a Game of Life according to the rules from John Horton Conway. It was written for the Ami/WinInstructor emulator.

The particularity of Game of Memories is that the field for the Game of Life is laid out in a 16*16 byte grid storage area that the emulator can graphically represent and so the view can be resembled - whereby the name of the program: Game of Memories.

When the progam is loaded into WinArcadia, the field is still not seen. "Tools|Memory editor..." must be invoked. The field is in the memory bank $0E00..$0EFF. You should set "Region" to that memory region, and "View as" to "Characters".

The original listing has an error in byte $125:

0124 F9 7C BDRR,r1 $122

which causes an infinite loop. It should instead be:

0124 F9 7E BDRR,r1 $124

The version in the Games Pack incorporates this fix.

Train:

Bits 6..4 Bits 3..0
%000: 0 mph (stopped) %0000: oP...... HSE
%001: 80 mph %0001: oPOOO... HSE + 3 FC
%010: 40 mph %0010: oPOUU... HSE + 1 FC + 2 EC
%011: 27 mph %0011: oPOUAo.. HSE + 1 FC + 1 EC + 1 HC + 1 C
%100: 19 mph %0100: oPOOo... HSE + 2 FC + 1 C
%101: 15 mph %0101: oPooo... HSE + 3 C
%110: 12 mph %0110: oPUUUo.. HSE + 3 EC + 1 C
%111: 10 mph %0111: o=ooo... LSE + 3 C
- %1000: o=UUo... LSE + 2 EC + 1 C
- %1001: o=AAo... LSE + 2 HC + 1 C
- %1010: o=UUo... LSE + 2 EC + 1 C
- %1011: o=OOOo.. LSE + 3 FC + 1 C
- %1100: o=...... LSE
- %1101: M....... MT
- %1110: doooo... EM + 4 C
- %1111: Mooo.... MT + 3 C

Train components are:

Abbreviation Display Description
EM d electric-powered mine engine
MT M battery-powered mine tractor
HSE oP high speed engine
LSE o= low speed engine
FC O full car
HC A half-full car
EC U empty car
C o caboose

Signetics TWIN

Region Size Master CPU Slave CPU
$0000..$00FF 256 bytes bootstrap ROM (to boot SDOS from disk) slave RAM
$0100..$14FF 5K master RAM (for SDOS) slave RAM
$1500..$187F 896 bytes master RAM (overlay area 1) slave RAM
$1880..$1BFF 896 bytes master RAM (overlay area 2) slave RAM
$1C00..$3FFD 9214 bytes master RAM slave RAM
$3FFE..$3FFF 2 bytes DOS version number (except for very early versions) slave RAM
$4000..$7FFF 16K window into (ie. mirror of) slave RAM unexpanded system: unmapped
expanded system: slave RAM

The resident (non-overlay) part of SDOS contains:

job dispatcher
SVC processor
device handlers
GO, LOAD, SYSTEM, XEQ commands

TWIN stands for Test Ware Instrument.

The master CPU runs DOS and handles all I/O (keyboard, CRT, floppies, etc.). The slave CPU merely runs programs in its own memory, and asks the master to perform I/O for it via service requests (and, of course, can access prototype hardware, depending on which mode is in use). To switch from master to slave, the master just executes a HALT instruction. To switch from slave to master, any master interrupt (but not slave interrupt) can be used. Eg. timer/keyboard/etc. interrupts and Service Requests. The master CPU has 16 interrupt priority levels. Master CPU interrupt handlers start at $0000 of master RAM and go up by 2 per entry. The slave CPU has 8 interrupt priority levels. Slave CPU interrupt handlers start at $0000 of slave RAM and go up by 2 per entry. Interrupt priorities 1 and 3 are used for master and slave RAM parity errors, respectively. Lower priority numbers represent "higher" (more important) priorities.

Note that, in MOD headers, the destination base address specified by the Set Base command start is always as viewed from the master CPU, even when loading into slave RAM (as the loading as always done by the master CPU).

Errata: On page 1-17 of the Tektronix 8002A Service Manual, ITD should be OTD. Thus, to read a sector the steps are:

1. Go RST mode. Check disk status.
2. Go SIO mode. Check disk status.
3. Go OTD mode. Send Normal Read command.
4. Go OTD mode. Send drive number.
5. Go OTD mode. Send sector number.
6. Go OTD mode. Send track number.
7. Go IND mode. Read 1st byte.
: : :
134. Go IND mode. Read 128th byte.
135. Go RST mode. Check disk status.

SDOS supports these formats:

"Hex" - Appendix C (AOF)
"SMS" - Appendix D (for PROM programmer)
"MOD" - "Binary load module"
"Com" - "Command file" (ie. batch/script file)

Here are the contents of the various "DOS areas" aka "bootblocks" (tracks 1..4) of the disks:

DOS (tracks 1..4) Disk(s)
DIP4 diag_4.4_5-23-79
EXOS HM19..22
PMON (expects 8080 slave) pascal_I.4b
CP/M 0517-0135-01_8002_cpm_adm3_pe_ws_palasm
CP/M 0517-0136..0142-01
CP/M 8002_cpm_ws_hk
CP/M 88000141_8088_thor_of_ops
CP/M arb_mgr_work_disk
CP/M asm09src_cpm
CP/M cpm_on_tek_ws_utilities
CP/M cpm_trace_theory_of_ops
CP/M cpm_whitesmiths_c
CP/M debug_card_programmable_parts_2-3-81
CP/M tek_cpm_prom_document_format
CP/M wordstar_perkin-elmer_terminal
SDOS 2.0 van_erp
SDOS 2.0 HM02..04
SDOS 2.0 HM06..07
SDOS 2.0 HM13..14
SDOS 2.0 HM16..18
SDOS 2.0 HM23..25
SDOS 4.0 HM01
SDOS 4.0 HM10
SDOS 4.2 config42
SDOS 4.2 HM05
SDOS 4.2 HM15
SDOS 4.2 system42
SDOS 4.2 tss40
TEKDOS 2650 VER 1.6 REV A (aka UDOS) tekdos_v1.6_2650
TEKDOS 6500 3.1 tekdos_3.1_6500_copy
TEKDOS 6800 1.9 tekdos_1.9_bkup_8-79
TEKDOS 6800 1.9 99900761-01-A_tekdos_1.9
TEKDOS 6800 3.1 99900809-01_9508
TEKDOS 6800 3.1 99900817-01_9508_9508_link_cpy2
TEKDOS 6800 3.1 99900818-01_9508_executive_copy2
TEKDOS 6800 3.1 99900819-01_9508_io_module_copy2
TEKDOS 6800 3.1 99900820-01_9508_system_subroutines_cpy2
TEKDOS 6800 3.1 99900821-01_9508_emulator_ctl_cpy2
TEKDOS 6800 3.1 99900822-01_9508_cmd_line_proc_cpy2
TEKDOS 6800 3.1 99900823-01_9508_9508_real_time_analyzer_cpy2
TEKDOS 6800 3.1 99900824-01_9508_memory_cpy2
TEKDOS 6800 3.1 99900825-01_9508_comm_cpy2
TEKDOS 6800 3.1 99900924-01_9508_executable_modules_cpy2
TEKDOS 6800 3.1 Tek8002_1a
TEKDOS 6800 3.1 Tek8002_2
TEKDOS 6800 3.3 TekDOS_3.3_6800_cpy1..2
TEKDOS 6801 3.1 6801_tekdos_v3.1_f001
TEKDOS 680X 3.2 Tek8002_12..14
TEKDOS 8048 3.1 chuck_tekdos_ice
TEKDOS 8080 3.0 Tek8002_3
TEKDOS 8080 3.1 Tek8002_4
TEKDOS 8080 3.1 Tek8002_6a
TEKDOS 8080 3.1 Tek8002_11
TEKDOS 8085 3.1 Tek8002_5
TEKDOS 8085 3.1 Tek8002_7a
TEKDOS Z80 2.2 99900862-01
TEKDOS Z80 2.2 99901253-01_9516_boot_listing
TEKDOS Z80 2.2 99901254-01_9516_boot_src_obj
TEKDOS Z80 2.2 99902585-01
TEKDOS Z80 3.1 0517-0143..0147-01
TEKDOS Z80 3.1 8048_v3.1_9-6-79
TEKDOS Z80 3.1 8086_fpgas
TEKDOS Z80 3.1 9516_debug_diagnostic_with_diagnostic_emulator
TEKDOS Z80 3.1 ed_lenox_z80_3.3
TEKDOS Z80 3.1 editor_for_slave_adapter_d0
TEKDOS Z80 3.1 hal_gillette_z80_v3.1_system
TEKDOS Z80 3.1 master_cmd_files_for_slave_adapter
TEKDOS Z80 3.1 master_cmd_files_for_slave_adapter_run_disk_0
TEKDOS Z80 3.1 progfpga_slave_adapter_ed_lennox_0
TEKDOS Z80 3.1 slave_adapter_drive_1_programmable_parts_hist
TEKDOS Z80 3.1 supervsrctl
TEKDOS Z80 3.1 Tek8002_8
TEKDOS Z80 3.1 Tek8002_10
TEKDOS Z80 3.1 Tek8002_17b
TEKDOS Z80 3.1 Tek8002_21
TEKDOS Z80 3.1 tekdosz80v3.1slaveadaptersupervisorrun
TEKDOS Z80 3.1 test_files_for_8086
TEKDOS Z80 3.1 z80_3.1_debug_checkout_8086_vehicle
TEKDOS Z80 3.2 Tek8002_16
TEKTIP 1.5 tektip_1.5
TOS 1.0 TWINBoot
"EMPTY" (all zeroes) Tek8002_15
"EMPTY" (all zeroes) Tek8002_23b
"SDOS" (all zeroes) cmd_src_5b
"SDOS" (all zeroes) HM08..09
"SDOS" (all zeroes) HM11..HM12
"SDOS" (all zeroes) margriet1
"SDOS" (all zeroes) sdos42_link
"SDOS" (all zeroes) TWINData
"TEKDOS" (all zeroes) 99900827-01_hazel_6809_cpy2
"TEKDOS" (all zeroes) 99900828-01_hazel_8080-85_cpy2
"TEKDOS" (all zeroes) 99900829-01_hazel_6800_cpy2
"TEKDOS" (all zeroes) 99900831-01_hazel_8048_cpy2
"TEKDOS" (all zeroes) cpm-wordstar_ed_lennox
"TEKDOS" (all zeroes) files
"TEKDOS" (all zeroes) supv_edit_disk_slave_adapter_drive_1
"TEKDOS" (all zeroes) supvhis2
"TEKDOS" (all zeroes) supvhis3
"TEKDOS" (all zeroes) Tek8002_1b
"TEKDOS" (all zeroes) Tek8002_17a
"TEKDOS" (all zeroes) Tek8002_22
"TEKDOS" (all zeroes) Tek8002_25
Other file(s) 99900826-01_h2lasm_cpy2
Other file(s) 99900830-01_hazel_z80_cpy2
Other file(s) 99900878-01_com-ram-05_part1_v1.0_cpy2
Other file(s) 99900884-01_com-ram-05_part2_v1.0_cpy2
Other file(s) 99900889-01_com-ram-05_part3_v1.0_cpy2
Other file(s) 99901441-01
Other file(s) sdos42_cmd_src_1..5
Other file(s) Tek8002_9
Other file(s) Tek8002_18..20
Other file(s) Tek8002_23a
Other file(s) Tek8002_24a
Other file(s) Tek8002_24b
Other file(s) Tek8002_26
Other file(s) pas_src
Other file(s) prom_mod9
Other file(s) rasm
Other file(s) sdos42_hwa
Other file(s) sdos42_macro_src
Other file(s) sdos42_opt_drv
Other file(s) sdos42_res_link
Other file(s) sdos42_res_master
Other file(s) sdos42_util
Corrupt/missing word_star_work_disk.img

Dark grey disks do not contain a valid bootable DOS for the Signetics 2650 CPU.

word_star_work_disk.img is only 311,296 bytes (missing the first track?).

TOS 1.0 asks for the current date and time on boot. If those are entered, the timer is enabled.
TEKDOS (apart from UDOS) switches to the slave CPU. Slave memory is all zeroes (why!?) so we just run endlessly through the first 8K page of slave memory. Changing the HALT at $1DC1 of master memory to NOP is sufficient to get TEKDOS working.
TEKTIP 1.5 doesn't like to get interrupts 4 and 5 (teletype I/O).

DOS command filename and return code cross-reference (with no arguments supplied):

Command EXOS TOS SDOS 2.0 UDOS SDOS 4.0 SDOS 4.2
Filename(s) Return code Filename(s) Return code Filename(s) Return code Filename(s) Return code Filename(s) Return code Filename(s) Return code
Abort P, (O) Yes E ABT 31 P, (N) ABT 31 M, (O) ABT 31 L, (K) ABT 31 M, (L1) ABT 31
ASM - ASM 3 Z, 8, 7 No U, T, S, Z, 5, 4, 3 No Z, Y, SZ, Z No Y, Z, 2, 1, 0, Z No Z, 6, 5, Z No
ASsign D, (C) ASsign 31 3, (R) ASN 31 E ASN 31 E ASN 31 E ASN 31 8 ASN 31
CLose D, (C) CLose 31 3, (R) CLS 31 E CLS 31 E CLS 31 E CLS 31 8 CLS 31
Cont P, (O) Yes E CON 31 P, (N) CON 31 M, (O) CON 31 L, (K) CON 31 M, (L1) CON 31
CMpf - CMpf 3 - TOS 3 - DOS 3 P1, Z CMP 31 M1, M, (L1) CMP 31 D, E CMP 31
COPy B, (A) COPy 16 G COP 13 E COP 30 E COP 30 E COP 30 2, (1) COP 16
CProm - CProm 3 S, (W) PRM EOJ K, (J) Yes I, X, (W) PRM 62 P1, P, (O) Yes Q1, Q, (P1) Yes
CSms - CSms 3 - TOS 3 E, (R) SMS 6 E, (P) SMS 6 E, (M1) SMS 6 N, (M1) SMS 6
DEBug A, 7, @ Yes N, M, (O) Yes E, 1, (Z) Yes E, (D) No E, Z, (8) Yes I, C, (4) Yes
DELete C, (B) DELete EOJ 4, (3) DEL 31 E DEL 31 E DEL 31 E DEL 31 8 DEL 31
DEv
DEVice
Q, (P) DEv 31
(as DEv)
W, (E) DEV 31
(as DEVice)
R, (P) DEV 31
(as DEVice)
N, (M) DEV 31
(as DEVice)
L1, (L) DEV 31
(as DEVice)
M1, (M) DEV 31
(as DEVice)
DFil - DFil 3 - TOS 3 - DOS 3 - DOS 3 O, N1, (N) DFL 31 P1, P, (O) DFL 31
Dump 4, (3) Dump 31 H, (G) DMP 31 Z DMP 31 4, (3) DMP 31 Z DMP 31 1, (D) DMP 31
DUP R, (Q) DUP 9 T, (S) DUP 9 Z, (W) DUP 9 T, (S) DUP 9 V, (U) DUP 9 T1, (T) DUP 9
EDIT 9, G, F, E No E, K, 8 No D, C, B, A, H, G, F, E No D, C, B, A, H, G, F, E Yes D, C, B, A, H, G, F, E No E, I1, Y No
Ex
Exam
7 Ex 31
(as Ex)
H, (G) EXM 31
(as Exam)
2, (1) EXM 31
(as Exam)
COPYSYS, (BOOT) EXM 31
(as Exam)
Z EXM 31
(as Exam)
0, (C) EXM 31
(as Exam)
Fill - Fill 3 - TOS 3 - DOS 3 P, (N) FIL 31 71, (7) FIL 31 Z FIL 31
FORMAT E FORMAT 9 V, (F) FMT 9 E FMT 9 E FMT 8 E FMT 8 8 FMT 9
Go - Go 31 - TOS 31 - No - DOS 37 - DOS 37 - DOS 37
Ice - Ice 3 - TOS 3 - DOS 3 - DOS 3 Q, (P1) ICE EOJ R, (Q1) ICE EOJ
Kill Q, (P) Kill 31 W, (E) KIL 31 R, (P) KIL 31 N, (M) KIL 31 L1, (L) KIL 31 M1, (M) KIL 31
LDir
Ldir
O, L Yes
(as LDir)
R, 6 Yes
(as LDir)
N, M Yes
(as Ldir)
O, L Yes
(as Ldir)
K, J Yes
(as Ldir)
L1, L Yes
(as LDir)
LOad - LOad 49 - ONA 49 - DOS 49 - DOS 49 - DOS 49 DOS 49
Module N, M, (L) Module 34 2, D, (N) MOD 12 O, L, (K) MOD 12 K, J, (I) MOD 12 I1, I, (R) MOD 12 K, J, (H) MOD 12
MOVe - MOVe 3 - TOS 3 - DOS 3 P, (N) MOV 31 8 MOV 31 #B, (#) MOV 31
Patch - Patch 3 - TOS 3 Z PAT 31 4, (3) PAT 31 71, (7) PAT 31 Z PAT 31
PRint E, (Q) PRint 30 C, (1) PRN 30 E PRN 30 E PRN 30 E PRN 30 8, (N) PRN 30
PRINTL E, (Q) PRINTL 30 C, (1) PRN 30 E PRN 30 E PRN 30 E PRN 30 8, (N) PRN 30
PROm - PROm 3 - TOS 3 - DOS 3 - DOS 3 8 PRM 52 !, (9) PRM 52
REad - REad 3 - TOS 3 - DOS 3 - DOS 3 X, (W) RDW 31 N1, W, (V) RDW 31
REName C, (B) REName 8 4, (3) REN 31 E REN 31 E REN 31 E REN 31 8 REN 31
Rhex - Rhex 3 L, (J) No J, (Z) No W, (V) No N, (X) No O, (N1) No
RProm K, (J) RProm EOJ S, (W) PRM EOJ K, (J) PRM EOJ I, X, (W) PRM 62 P1, P, (O) PRM EOJ Q1, Q, (P1) PRM EOJ
SEArch Q, (P) SEArch 31 W, (E) SCH 31 R, (P) SCH 31 - DOS 3 - DOS 3 - DOS 3
SLave T, (S) SLave 31 P, (U) SLV 31 Z SLV 31 V, (U) SLV EOJ - DOS 3 - DOS 3
STatus S, (R) Yes U, (V) Yes Z Yes U, (T) Yes W, (V) Yes V, U, T1 Yes
Sus
Suspend
P, (O) Yes
(as Sus)
E SUS 31
(as Suspend)
P, (N) SUS 31
(as Suspend)
M, (O) SUS 31
(as Suspend)
L, (K) SUS 31
(as Suspend)
M, (L1) SUS 31
(as Suspend)
SYstem - Yes - Yes - Yes - DOS 9 - Yes - Yes
TYpe Q, (P) TYpe 31 W, (E) TYP 31 R, (P) TYP 31 N, (M) TYP 31 L1, (L) TYP 31 M1, (M) TYP 31
Upr - Upr 3 - TOS 3 - DOS 3 - DOS 3 E UPR EOJ 8 UPR EOJ
Verify Q Verify 31 F, (T) TOS 48 W, (V) VER 31 S, (R) VER 31 U, (T) VER 31 T, (S1) VER 31
WHex - WHex 3 J, (P) WHX 30 V, (U) WHX 30 R, (P1) WHX 30 T, (S1) WHX 30 S1, (X) WHX 30
WProm K, (J) WProm EOJ S, (W) PRM EOJ K, (J) PRM EOJ I, X, (W) Yes P1, P, (O) Yes Q1, Q, (P1) Yes
WRite - WRite 3 - TOS 3 - DOS 3 - DOS 3 X, (W) RDW 31 N1, W, (V) RDW 31
WSms - WSms 3 - TOS 3 E, (R) Yes E, (P) Yes E, (M1) Yes N, (M1) Yes
Xeq
XEQ
- Xeq 49
(as Xeq)
- ONA 49
(as Xeq)
- DOS 49
(as XEQ)
- DOS 49
(as XEQ)
- DOS 49
(as XEQ)
- DOS 49
(as XEQ)

Most of these filenames are stored on disk with a prepended "@" (and are displayed by "LDIR ." with a prepended "."). Parenthesized filenames mean the head is over that file at the end of the operation but it is not read from.
Return codes are:

3 Command file not found.
6 Device read error.
8 Device not specified when required.
9 Invalid drive number.
12 Invalid file name.
13 Input file not found.
16 Input device assign failure.
30 Invalid parameter.
31 Parameter required.
34 Invalid address.
37 Invalid go address.
48 Load file not found.
49 Load file assign failure.
62 Device not operational.
EOJ End of Job.

I/O Ports

For reads:

Port Description
$E8 Data Byte
$E9 Status Byte:
bits 7..5: unused
bit 4: parity error
bit 3: framing error
bit 2: data overrun
bit 1: transmit buffer empty
bit 0: data available
$EA "Controller Flag Byte"
$EB "Disk Status Byte"

For writes:

Port Name Description
$D0 PCPT High Speed Paper Tape (HSPT) control port
$D1 PDPT PDPT High Speed Paper Tape (HSPT) data port
$E8 ? CRT/TTY output
$E9 ? Bits 7..3: unused
Bit 2: enable TTY interrupts
Bit 1: parity select
Bit 0: TTY paper tape reader
$EA ? Control Device (floppy drive and printer)
$EB ? Data Device (floppy drive and printer)
$EC ? Bits 7..1: ?
Bit 0: interval timer (0=disabled, 1=enabled)
$ED ? "Master Memory Protect"
$EE BSPT Common memory bank select:
$00 = map slave RAM $0000..$3FFF to master RAM $4000..$7FFF
$01 = map slave RAM $4000..$7FFF to master RAM $4000..$7FFF
$02 = map slave RAM $8000..$BFFF to master RAM $4000..$7FFF
$03 = map slave RAM $C000..$FFFF to master RAM $4000..$7FFF

Central Data 2650

"Product: 2650 Single Board Computer
Company: Central Data Company
Features: Employs Signetics 2650 microprocessor.
There is an in-built 80 character by 16 line video display character generator (64 upper case ASCII character set) with a user programmable set of 64 characters (8x8 matrix) for non-standard characters.
There is a Kansas City Standard cassette interface, a 1024 byte PROM monitor program, 2048 bytes of programmable memory of which 768 are available for programming with the balance dedicated to the display, one 8 bit input port and one 8 bit output port.
In addition there are sockets for 3K of PROM (which may include the Central Data Company's editor and assembler).
A BASIC software package is available on cassette tape.
The user needs to supply 3A at 5V power supply, an ASCII keyboard, a video monitor and possibly some additional memory."
- "Small Systems Computer Sourcebook" [sic], by J. C. Boonham.

A typical configuration is:

Central Data 2650 computer (including CUTS cassette interface)
ASCII-encoded keyboard
video monitor
tape deck
power supply

Region Size Description
$0000..$03FF 1K monitor ("supervisor") ROM BIOS
$0400..$0FFF 3K expansion ROM (optional)
$1000..$103F 64 bytes display RAM (unusable)
$1040..$14FF 1216 bytes display RAM
$1500..$150F 16 bytes monitor RAM (unusable)
$1510..$17E9 730 bytes user RAM
$17EA..$17FF 26 bytes monitor RAM
$1800..$1FFF 2K unused
$2000..$7FFF 24K expansion RAM/ROM (optional)

$1000..$103F: "In the first CD2650 Newsletter, April 1978, Jeff Roloff says: '...if you get hold of some slow RAM for use in the display section, the first four characters will be illegible because of timing problems.' If the RAM was fast enough for the rest of the display it would be fast enough at the beginning. I suspect that he had problems with resetting his counters which made the first character spaces too narrow. I remember designing a frequency synthesiser with 74 series ICs where the downcounter had to start resetting at count 3 to be ready at count 0!" - Richard Rogers.
$1500..$150F: "You can't use $1500..$150F because when you reach the end of the line, WCHR at $0396 sends you to LFCR at $0024 which immediately writes a space at the current (too big) cursor position." - Richard Rogers.

Hardware equates/memory map

The layout of display RAM is unusual:

$1000: 0,0
$1001: 0,1
$1002: 0,2
 : : :
$100F: 0,15
$1010: 1,0
$1011: 1,1...

To access a given cell, the formula is:

address = $1000 + (x * 16) + y;

where x is 0..79 and y is 0..15.

Characters $00..$3F use the 1st character generator PROM. They are the uppercase alphabetic characters, numeric characters and punctuation characters.
Characters $40..$7F use the optional 2nd character generator PROM, if available (otherwise just another copy of $00..$3F). These are generally used for eg. lower case characters, Star Trek characters, card symbols and chessmen.
Characters $80..$FF are not normally used.
The character sets are:

Code Non-chessmen ("lowercase") Chessmen ASCII
$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $D $E $F $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $D $E $F $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $D $E $F
$0x @ A B C D E F G H I J K L M N O @ A B C D E F G H I J K L M N O @ A B C D E F G H I J K L M N O
$1x P Q R S T U V W X Y Z [ · ] P Q R S T U V W X Y Z [ · ] P Q R S T U V W X Y Z [ · ]
$2x   ! " # $ % & ' ( ) * + , - . /   ! " # $ % & ' ( ) * + , - . /   ! " # $ % & ' ( ) * + , - . /
$3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
$4x ` a b c d e f g h i j k l m n o @ A B C D E F G H I J K L M N O
$5x p q r s t u v w x y z { | } ~ p q r s t u v w x y z { | } ~ P Q R S T U V W X Y Z [ · ]
$6x ! " # $ % & ' ( ) * + , - . / - ! " # $ % & ' ( ) * + , - . / - ` a b c d e f g h i j k l m n o
$7x 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 0 1 2 3 4 5 6 7 8 9 : ; < = > ? p q r s t u v w x y z { | } ~

Red is non-chessmen ("lowercase") character set.
Green is chessmen character set. Character $4D (shown here as ◫) is actually a square with a horizontal (not vertical) bisecting line. Unicode sux :-(
Blue (ASCII) is used for Central Data DOS and P1 DOS. Characters shown here in dark blue are control codes which will be displayed as inverse video.

In the real character PROMs, the character glyphs are stored in this order:

1st PROM:
glyphs $00, $20, $10, $30, $08, $28, $18, $38,    (bytes $000..$03F of PROM)
glyphs $01, $21, $11, $31, $09, $29, $19, $39,    (bytes $040..$07F of PROM)
glyphs $02, $22, $12, $32, $0A, $2A, $1A, $3A,    (bytes $080..$0BF of PROM)
glyphs $03, $23, $13, $33, $0B, $2B, $1B, $3B,    (bytes $0C0..$0FF of PROM)
glyphs $04, $24, $14, $34, $0C, $2C, $1C, $3C,    (bytes $100..$17F of PROM)
glyphs $05, $25, $15, $35, $0D, $2D, $1D, $3D,    (bytes $140..$17F of PROM)
glyphs $06, $26, $16, $36, $0E, $2E, $1E, $3E,    (bytes $180..$1BF of PROM)
glyphs $07, $27, $17, $37, $0F, $2F, $1F, $3F.    (bytes $1C0..$1FF of PROM)

2nd PROM:
glyphs $40, $60, $50, $70, $48, $68, $58, $78,    (bytes $000..$03F of PROM)
glyphs $41, $61, $51, $71, $49, $69, $59, $79,    (bytes $040..$07F of PROM)
glyphs $42, $62, $52, $72, $4A, $6A, $5A, $7A,    (bytes $080..$0BF of PROM)
glyphs $43, $63, $53, $73, $4B, $6B, $5B, $7B,    (bytes $0C0..$0FF of PROM)
glyphs $44, $64, $54, $74, $4C, $6C, $5C, $7C,    (bytes $100..$13F of PROM)
glyphs $45, $65, $55, $75, $4D, $6D, $5D, $7D,    (bytes $140..$17F of PROM)
glyphs $46, $66, $56, $76, $4E, $6E, $5E, $7E,    (bytes $180..$1BF of PROM)
glyphs $47, $67, $57, $77, $4F, $6F, $5F, $7F.    (bytes $1C0..$1FF of PROM)

Supervisor BIOS

A period (.) indicates that the supervisor program is ready for a command.
An A indicates that it is waiting for you to type in an address.
At any time the supervisor is looking for a keyboard input, you can press Esc which will terminate the present command and wait for a new one.

A: Alter or display memory
Press A.
It will then ask for a hexadecimal address.
The address and the data then appear on the next line.
You can now:
press Esc to quit the alter/display routine;
enter C to change the data at that location;
type in two hex characters to fill the memory location; or
press space to display the next memory location.

B: Set a breakpoint address
Press B.
It will then ask you for the address of the breakpoint.
When this address is reached in the program, the supervisor will save all of the registers and wait for a new command. It signifies that the breakpoint address has been reached by writing the message:

BP 1703

The registers and memory can now be examined as you see fit. After the breakpoint has been executed, it is cleared and the program will be allowed to run past the point next time through.

C: Clear a breakpoint address
Press C.
The supervisor responds by typing the address that the breakpoint was set at. Note that you must set breakpoints at an address position where an instruction would begin. In other words, you cannot set a breakpoint to be executed at an address which is the second or third byte of an instruction.

E: Execute a program
Press E.
It will then ask for the address that is should start executing at.
It will then jump to the address and start executing instructions.

I: Inspect CPU registers
Press I.
It will then ask you to type a register number corresponding to the register that you want, as follows: 0 register 0 (r0) 1 register 1, bank 0 (r1) 2 register 2, bank 0 (r2) 3 register 3, bank 0 (r3) 4 register 1, bank 1 (r4) 5 register 2, bank 1 (r5) 6 register 3, bank 1 (r6) 7 Program Status Word, Lower (PSL) 8 Program Status Word, Upper (PSU)

The microcomputer will then display the data that was in this register just before the program returned to the supervisor. You now have three options:
to stop by pressing Esc;
to change the register value by entering C; or
to inspect another register by pressing Space.

There are also the D, L, R and V commands, which are used for tape operations.
It seems to be possible to "hang" the supervisor; eg. by pressing E repeatedly. This is because RETN ($288) branches to *ADD1, and sometimes ADD1 has garbage such as $6EEE.

The available scan of the supervisor is poor; the following bytes could conceivably be wrong:

$13A, $16C, $181: probably $EB but maybe $E8
$316:             probably $F8 but maybe $FB
$3C4:             probably $2E but maybe $28 or $2B

The following unnamed variables are used by the supervisor:

$17EB..$17F3
$17F8
$17FC
$17FD?

The WCHR routine masks its character to the $00..$3F range (ie. it prints everything as uppercase).
The KBIN routine can return characters in the $00..$7F range. However, it can only print them as uppercase (because it uses WCHR).
The supervisor internally works with letters in the $41..$5A (65..90) (ASCII uppercase "A".."Z") range. It relies on the masking performed by WCHR to output them as $01..$2A (1..26) (CD2650 uppercase "A".."Z").

Ideally, full autodocs for the supervisor (and for the BIOSes of the TVGC, PIPBUG and the SI50) would be available, eg.:

WRAD:
Stack required: 2.
Functions called: LFCR, HXOT, WRBL.
Pages: 3.
Addresses: $DB..$EF.
Can branch to: None.
RAM data accessed: ADD1/2.
ROM data accessed: None.
ROM constants used: INCD ($10), CUCD ($1C), SPCD ($20).
Subsections: L2.
Called by: ?.
Registers: r0 will be SPCD ($20), r3 will be CUCD ($1C).
PSW: WC is cleared.

Unarchived Software

The following are confirmed but unavailable:

Spacewar (clone of "Scelbi's Galaxy Game for the 8008/8080"), by Roger Miskowicz
Star Trek
Target

If you know of any other software, or have dumps/tapes/listings of any of the above software, please email us.

Game Help

8KBASIC.pgm:

To start a game: press R then ENTER.
Now, from the "OPTION" prompt, press R.

In editor (at COMMAND prompt):

-      = go to beginning of file
+      = go to end of file
/      = go backwards 15 lines
Bx     = go backwards x lines
space  = go forwards 15 lines
Fx     = go forwards x lines
Cx     = change line x
Ix     = insert after line x
Ctrl+C = done changing/inserting
Dx     = delete x lines from top of screen
R      = go to BASIC

In BASIC (at OPTION prompt):

I      = Inspect variable
L      = RUN to line
R      = RUN
Esc    = stop running
S      = Single step
Esc    = go to editor

Standard BASIC 8K BASIC
CLS ERASE
var=PEEK(addr) PEEK addr,var
PRINT"string" PRINT'string'
PRINT var PRINT #var
PRINT AT y,x PRINT@y,x
'comment *comment
IF a=b THEN IF a=b

The interpreter doesn't like blank lines (gives ARG ERROR), but an empty comment (* only) is acceptable.
String concatenation (eg. A$='FOO'+'BAR') is not allowed.
String assignments (eg. A$='FOO') must exactly fill the allocated (DIMensioned) storage.
When running programs: for multi-variable INPUT statements, each entry should be terminated with the RETURN key (not a comma).

A normal floating point variable is 8..22 bytes:

1 byte for type ($0x)
2 bytes for pointer to next variable
1..15 bytes for name
4 bytes for contents

A floating point array is 4+ bytes:

1 byte for type ($4x)
2 bytes for pointer to next variable
1..15 bytes for name
(0..255)*4 bytes for contents

A string is 5..274 bytes:

1 byte for type ($8x)
2 bytes for pointer to next variable
1..15 bytes for name
1 byte for length
0..255 bytes for contents

Here is a summary of the differences between V1.0 and V1.3 of 8K BASIC (all values in hex):

Range V1.0 V1.3
1780..17AA 00s <various>
25B9..25BB 70 F4 80 1F 3E 98
2C25..2C27 3F 34 0D 3F 3F EE
2E6F..2E74 EE 14 A5 9C 30 5A CE 14 A5 C0 C0 C0 (unofficial)
33B9..33BC 1A 64 19 6F 9C 4F D1 C0
3995 04 03
3E88..3EAA <various> <various>
3F2F..3F31 3F 3C F5 1F 17 96
3F78..3F7A 1F 38 91 1F 17 82
3FD1..3FED <none> <various>
3FEE..3FF3 <none> <various>

The handwritten annotations on the listing are generally transcriptions of the V1.3 changes.

Accurate PSL emulation (as provided by Ami/WinArcadia 33.91+) is needed for the floating point subsystem to work correctly. There is still one remaining problem to be investigated: using the ^ (power of) operator (eg. LET A=3^2) will cause a hang.
Bytes $3D90..$3D91 (in the COSine() function handler) are ambiguous (due to a poor quality printout/photocopy). But logically they would be $06 $04 (LODI,r2 4).

Numbers are stored using 1 exponent byte and 3 mantissa bytes, as follows:

Bit 31 is the sign of the exponent (0=positive, 1=negative).
Positive exponents represent large positive or negative numbers.
Negative exponents represent small positive or negative numbers (-0.5..0.5).
Bits 30..24 are the exponent itself, ie. the position of the "decimal" (really binary) point,
ie. how many bits are needed to store the integer part of the number.
Very small numbers will have negative exponents (and will have leading zeroes in the fractional part).

Bit 23 is the sign of the mantissa (0=positive, 1=negative).
Bits 22..0 are the mantissa itself.
Positive numbers that have been properly normalized will have mantissa bytes of $400000..$7FFFFF.
Negative numbers that have been properly normalized will have mantissa bytes of $C00000..$FFFFFF.
Values of $0..$3FFFFF and $800000..$BFFFFF should never occur.

The integer part is obtained by right-shifting (halving) the mantissa, 23 - exponent times.
The fractional part is obtained by left-shifting (doubling) the mantissa, exponent times.
This represents the fractional part in units of 1/8,388,608.
So by dividing this value by 8,388,608 you would obtain the fractional part.

Exponent Range Int. digits Int. zeroes . Frac. zeroes Frac. digits Example
-128 About 10^-38 0 0 . 128 23    0.000001 = $80 00 00 08
... ... ... ... . ... ... ...
-3 1/16..1/8 0 0 . 3 23    0.0625   = $FD 40 00 00
-2 1/8..¼ 0 0 . 2 23    0.125    = $FE 40 00 00
-1 ¼..½ 0 0 . 1 23    0.25     = $FF 40 00 00
0 ½..1 0 0 . 0 23    0.5      = $00 40 00 00
+1 1..2 1 0 . 0 22    1.0      = $01 40 00 00
+2 2..4 2 0 . 0 21    2.0      = $02 40 00 00
+3 4..8 3 0 . 0 20    5.0      = $03 50 00 00
+4 8..16 4 0 . 0 19   10.0      = $04 50 00 00
+5 16..32 5 0 . 0 18   20.0      = $05 50 00 00
+6 32..64 6 0 . 0 17   50.0      = $06 64 00 00
+7 64..128 7 0 . 0 16  100.0      = $07 64 00 00
+8 128..256 8 0 . 0 15  200.0      = $08 64 00 00
+9 256..512 9 0 . 0 14  500.0      = $09 7D 00 00
+10 512..1K 10 0 . 0 13 1000.0      = $0A 7D 00 00
+11 1K..2K 11 0 . 0 12
+12 2K..4K 12 0 . 0 11
+13 4K..8K 13 0 . 0 10
+14 8K..16K 14 0 . 0 9
+15 16K..32K 15 0 . 0 8
+16 32K..64K 16 0 . 0 7
+17 64K..128K 17 0 . 0 6
+18 128K..256K 18 0 . 0 5
+19 256K..512K 19 0 . 0 4
+20 512K..1M 20 0 . 0 3
+21 1M..2M 21 0 . 0 2
+22 2M..4M 22 0 . 0 1
+23 4M..8M 23 0 . 0 0
+24 8M..16M 23 1 . 0 0
+25 16M..32M 23 2 . 0 0
... ... ... ... . ... ... ...
+127 about 10^37 23 104 . 0 0 ~10^37      = $7F 7F FF FF

Int. digits: number of meaningful digits at left of integer part.
Int. zeroes: number of trailing zeroes at right of integer part.
Frac. zeroes: number of leading zeroes at left of fractional part.
Frac. digits: number of meaningful digits at right of fractional part.
Ie. <integer digits><integer zeroes>.<fractional zeroes><fractional digits>
Eg. for an exponent of -2, the number is %0.00xxxxxxxxxxxxxxxxxxxxxxx (where x are mantissa digits).
At +24 and greater exponents, there are not enough mantissa digits to even hold the complete integer number (let alone any fractions).

12KBASIC-A.aof, 12KBASIC-B.aof:

It obeys one-letter commands of the form Xn, where X tells it what to do and n is the line number (or number of lines?).

S  - save to tape (pauses during save)
L  - load from tape
R  - runs the BASIC program
Cn - change from line n onwards
D  - deletes line 1
Dn - deletes lines from 1 to n
E  - exits to supervisor
An - append after line n. If you have just inserted some lines, it will add them again after the designated line
F  - scrolls forwards 1 line
Fn - scrolls forwards n lines
I  - insert after line 1 - type in program, Ctrl-C (=ETX) ends input
In - insert after line n - type in program, Ctrl-C (=ETX) ends input
Bn - scrolls backwards n lines
X  - scrolls forwards 1 line
Xn - ?
P  - modify string?
G  - go and run program with following options:
     D   - direct execution of a typed-in line
     R   - run the program
     S   - single step
     Esc - exits

It only needs line numbers as GOTO (and GOSUB, etc.) destinations.
At $5800 there is a small test program. It looks as if whoever saved the program first ran it with the extended functions deleted and wrote a small program before saving. So some of the extended functions may be corrupted or they may all be missing.
When an error is encountered: these OPTIONs are available:
D   - direct mode
R   - rerun the program
S   - single step
Esc - exits

12KBASIC-A.aof was probably typed in by me from the listing. Need to compare with 12KBASIC-B, which may have been modified for PHUNSY or PoP, as there are 982 differences (4%) between them.

ALP.bin:

Neither of these has been typed in by me from the listing. Need to verify these dumps against the listing and compare with each other. One or both may have been modified for PHUNSY or PoP, as there are 831 differences (4%) between them.

AlphaChess.aof, CDChess.aof, Chess3.aof:

The chessboard is laid out in accordance with standard chess notation, ie.:

A B C D E F G H
8 A8
□♜
BR
B8
■♞
BN
C8
□♝
BB
D8
■♛
BQ
E8
□♚
BK
F8
■♝
BB
G8
□♞
BN
H8
■♜
BR
7 A7
■♟
BP
B7
□♟
BP
C7
■♟
BP
D7
□♟
BP
E7
■♟
BP
F7
□♟
BP
G7
■♟
BP
H7
□♟
BP
6 A6
B6
C6
D6
E6
F6
G6
H6
5 A5
B5
C5
D5
E5
F5
G5
H5
4 A4
B4
C4
D4
E4
F4
G4
H4
3 A3
B3
C3
D3
E3
F3
G3
H3
2 A2
□♙
WP
B2
■♙
WP
C2
□♙
WP
D2
■♙
WP
E2
□♙
WP
F2
■♙
WP
G2
□♙
WP
H2
■♙
WP
1 A1
■♖
WR
B1
□♘
WN
C1
■♗
WB
D1
□♕
WQ
E1
■♔
WK
F1
□♗
WB
G1
■♘
WN
H1
□♖
WR

Moves are entered as source-destination. Eg. B1-A3.

AntennaComputer.bin:

This is a good dump, as regards the actual antenna computer program. The accompanying BASIC interpreter is why it is marked as a suspect dump. Overflows are very easy to generate, eg. attempting a LOOP of 1000 MHz.

Backup.aof: This program appears to be incomplete. Eg. execution flows beyond the listing into $15C3, it expects a TAPe OUT subroutine at $15C7 and a CLear SCReen subroutine at $1602. There is probably another unscanned page to this listing.

Bootstrap.aof: Might be the same as the IPL; needs reinvestigation.

Chess3.aof:

This does not appear to have been correctly ported to the CD2650. Eg. the KBIN function of the BIOS will echo the keystroke, but the game itself also echoes the keystroke, resulting in double echoing. Also note that it swallows (ignores) the first keypress after booting (although it might use the timing of that keypress for randomization or similar purposes).
Additionally, the byte at $29C7 is erroneous. Presumably BSTA,un $2400 was meant rather than BSTA,un *$2400 [$7710]; therefore $A4 should be changed to $24.

DOS.aof:

Got a "NOT READY" error, presumably due to incomplete disk emulation. Needs reinvestigation.

Editor/Assembler:

Commands are similar to the 12K BASIC editor, except:

G: goes to the supervisor
R: runs the assembler
Z: frees (zeroes) memory (changes BLOCKS LEFT from 00 to 50)

Hamurabi.aof:

You start with 100 men, 2800 bushels and 1000 acres. Turn phases are:

#1: Buy land: how many acres? (at 17..22 bushels per acre) (average of 19.5 bushels per acre)
Generally, at a price of 17..19 bushels per acre, you should buy.
#2: Sell land: how many acres? (at 17..22 bushels per acre) (average of 19.5 bushels per acre)
Generally, at a price of 20..22 bushels per acre, you should sell.
#3: Distribute food: how many bushels?
Requirement is 20 bushels per man.
Overfeeding will bring immigrants at 40 bushels per man.
There is never any reason to overfeed by more than 1960 bushels (which would bring 49 overfeeding immigrants, plus 1 hungry immigrant in a good harvest (and more in average or bad harvests), thus hitting the maximum of 50 immigrants per turn).
Deaths from starvation, and overfeeding immigrants, are calculated here but not applied yet.
#4: Plant land: how many acres?
There is never any reason not to plant the maximum possible amount of land.
Limiting factors are (ie. use whichever of these is the lowest):
a. acres
b. bushels * 2
c. men * 10
Bushels are used up (although you will always get more back as harvest than what you plant as seed). 1 bushel can plant 2 acres and a bad (minimum) harvest is 1 bushel per planted acre.
Acres and men are not used up (you just need enough of them available).
Harvest/rats:
Harvest per planted acre is 1..5 (average of 3) bushels. Since 1 bushel plants 2 acres, harvest per planted bushel is double this, ie. 2..10 (average of 6) bushels.
Rats eat 0..7% of total (stored+harvest) bushels per turn (average of 3.5%).
Population changes:
Immigrants are those from overfeeding as previously calculated in phase #3, plus these hungry immigrants:
((total bushels * (5 - harvest per acre)) ÷ 600) + 1
So, to bring immigrants, you should overfeed, have many total bushels, and a bad harvest.
There is a limit of 50 total immigrants per turn.
Deaths from starvation are as previously calculated in phase #3.
Additionally, there is a 10% chance of a plague which will kill 50% of your men (ie. average 5% plague deaths per turn). This is applied after immigrants and deaths from starvation have already been applied (in fact, strictly speaking it is applied at the start of the next turn).

The random factors each turn are:

a. the value of land (17..22 bushels per acre, average 19.5);
b. the harvest per planted acre (1..5 bushels per planted acre, average 3);
c. rat appetite (0..7% of total bushels, average 3.5%); and
d. whether a plague occurs (10% chance of killing 50% of your men) (average 5% plague deaths per turn).

In this version, there is no real scoring system nor game end (except with zero acres).
Scoring could be measured in land and/or food (and/or men, but the only reason to want men is for planting the land).
One possible algorithm is: score = bushels + (acres * 19.5) + men.

Input.aof:

This program is similar in purpose to TVTypewriter.aof except that it supports both uppercase and lowercase I/O.
Since the code for backspace is the same as that for lowercase "h" (8), and the code for a carriage return is the same as that for lowercase "m" (13), these two lowercase letters are unusable in this program.
Note that this program has not been tested on the genuine machine and the key bindings are mostly guesswork.

Life.aof:

Move around the screen with U/D/L/R for up/down/left/right. Use O (not 0) to set cells (they will appear as small o characters or as squares, depending on VDU setting) and the spacebar to clear them. To begin the simulation, move (with D key) the cursor to the bottom row of the screen. Never move the cursor above the top of the screen.

LunarLander.aof:

Here is the disassembly of the machine code routine:

$5BF6: 73       REDD,r3
$5BF7: 3F 01 9A BSTA,un DECR
$5BFA: CB 02    STRR,r3 $5BFE
$5BFC: 17       RETC,un
$5BFD: ??       <unused>
$5BFE: <vv>     <value>

MemoryTest.aof:

The provided dump tests the RAM at $2000..$7FFF. The normal result of running this program is no output (ie. success). The byte at $1512 is the high byte of the starting address. The low byte of the starting address is always $00. The byte at $1513 is the high byte of the (ending address + 1). The low byte of the ending address is always $FF. Therefore, you must test $xx00..yyFF (a multiple of 256 bytes, aligned at a 256-byte boundary). Eg. storing $80 at $1513 gives an ending address of $7FFF, and storing $48 there would give an ending address of $47FF. Ie.

start address =  *($1512) * $100;
end address   = (*($1513) * $100) - 1;

If you want to see error messages, you could change $1512 to $00 and $1513 to $80, to test $0000..$07FF (which is ROM and therefore fails the test). Output will loop until a key is pressed. Memory is tested destructively. Therefore, you must not test the $1510..$15A8 area, otherwise you will overwrite the program. Contrary to what is stated in the instructions, the are where the program is located ($1510..$15A8) is normal (ie. non- display) user RAM, not display RAM.

MorseCode.aof:

This program lacks documentation. It might be originally designed to be interactive rather than to use stored text.

NumbersGame.aof:

INT seems to round to the nearest integer, rather than just dropping the fractional part. Therefore, "digits" range in value from 1..12.

Pattern.aof:

"The program has been typed into SCREENs 5 and 6. LOAD does not work unless LIST has been used first." - Richard Rogers. To run this program, type the following:

5 LIST 6 LIST 5 LOAD
123 PATTERN

You can change the 123 to a different number; it controls the number of blobs to write.

ScreenPrinter.aof:

This program refers to (external) printer routines at $4000 and $4147.

TVTypewriter.aof:

This program seems to expect the address of KBIN to be $309. However, the correct address is $30F. This change has been made to the available dump. Also, the screen is filled with $00 ("@" symbol). This may be authentic.

PHUNSY

PHUNSY means [Frank] PHilipse UNiversal SYstem.

Region Size Mini-PHUNSY Full version
$0000..$07FF 2K RAM EPROM (PHUNSY BIOS)
$0800..$0BFF 1K RAM (optional) user RAM
$0C00..$0E40 577 bytes RAM (optional) MDCR RAM
$0E41..$0EDF 159 bytes RAM (optional) user RAM
$0EE0..$0EFF 32 bytes RAM (optional) monitor RAM (scratchpad)
$0F00..$0FFF 256 bytes RAM (optional) monitor RAM (command input buffer)
$1000..$17FF 2K RAM (optional) RAM (screen memory)
$1800..$1DFF 1536 bytes RAM (for use by BIOS) banked RAM ("U" bank)
$1E00..$1FFF 512 bytes ROM (Mini-Monitor BIOS) banked RAM ("U" bank)
$2000..$3FFF 8K unmapped? general purpose RAM
$4000..$7FFF 16K unmapped? banked RAM ("Q" bank)

Banks are:

U0: RAM
U1: EPROM (PDCR (Portable Digital Cassette Recorder))
U2: EPROM (DASS (DisASSembler))
U3: EPROM (LABHND (LABel HaNDler))
U4..UF: RAM
Q0: EPROM (MWB (MicroWorld BASIC)) ($4000..$5983)
Q1..QF: RAM

To run a BASIC game (after loading it):

Q (if necessary) OLD RUN

To make BASIC usable (after loading it):

NEW

To use the label program:

3UU

There are various versions of the PHUNSY monitor:

PMON0400.BIN is 04-0 from 1982 (as used in Ami/WinArcadia)
PMON0401.BIN is 04-1 from 1982
PMON0402.BIN is 04-2 from 1983
PMON0403.BIN is 04-3 from 1982 (sic)
03A-PMON0404.BIN and 04A-PMON0404.bin are 04-4 from 1983

Control port (ie. WRTC operand):
Bits 7..4 select which U-bank to use at $1800..$1FFF
Bits 3..0 select which Q-bank to use at $4000..$7FFF
Control port reads (REDC) are for serial input.
Data port reads (REDD) are for parallel input.
If high bit of data port is clear, a key is down.
If high bit of data port is set, no key is down.
Sound is generated by rapidly toggling bit 1 of the data port (via WRTD).
Writing to extended port $7E (WRTE) sets the timer countdown. It is specified in units of 10 milliseconds (ie. 1/100ths of a second), and thus can range from 0.01 to 2.55 seconds ($01..$FF). After expiration, an interrupt is generated, causing execution to jump to $001D. The timer is automatically reloaded whenever it expires. Writing $00 disables the timer.

IOAD is the WRTZV pointer: normally $7AB (SROUT)
IIAD is the REDZV pointer $7D8 (SERIN)
ICAD is the CHIZV pointer $7C4 (DCHIN)

SERIN waits for a key to be pressed, then returns it. Its pseudocode is:

r5 = 0;
r4 = 8;
do
{
r0 = PORTC & 1;
} while (r0 != 0);
gosub DELAYC;
for (r4 = 8; r4 >= 1; r4--)
{
gosub DELAY;
r0 = (PORTC & 1) | r5;
r5 = r0 >> 1;
}
gosub DELAY;
r0 = r5 & %01111111;
return;

CHINP returns a key if one is currently being pressed, otherwise it returns $7F (DEL). Its pseudocode is:

r0 = PORTD;
if (r0 & %10000000 == %10000000)
{
r0 = $7F [DEL];
}
else
{
PORTD = 4;
r0 = PORTD;
PORTD = 0;
do
{
r5 = PORTD;
} while (r5 & %10000000 == %10000000);
r0 &= $7F;
}
return;

KEYIN waits for a key to be pressed, then returns it. Its pseudocode is:

do
{
r0 = PORTD;
} while (r0 & %10000000 == %10000000);
PORTD = 4;
r0 = PORTD;
PORTD = 0;
do
{
r5 = PORTD;
} while (r5 & %10000000 == %10000000);
r0 &= $7F;
return;

Mini-PHUNSY

The 24-key keyboard is as follows:

...0... ...4... ...8... ...C... ..D->M. .Reset.
...1... ...5... ...9... ...D... ..M->D. ..Halt.
...2... ...6... ...A... ...E... ...G... DumpCas
...3... ...7... ...B... ...F... ...Cl.. LoadCas

which in the emulator is (by default):

...a1.. ...a2.. ...a3.. NumLock ...n/.. ...n*..
...Q... ...W... ...E... ...n7.. ...n8.. ...n9..
...A... ...S... ...D... ...n4.. ...n5.. ...n6..
...Z... ...X... ...C... ...n1.. ...n2.. ...n3..

Cas = Cassette
Cl = Clear
D = Display
G = Go to
M = Memory

Output is 6 7-segment digits and 7 decimal points, as follows:

.1.2.3.4.5.6.

The first decimal point is always lit. The second to seventh are lit when IOPORT($13) is 1..6, respectively.

Game Help

These PHUNSY BINs are compatible with Ami/WinPHUNSY:

50-THEME
64>374
BELMACH
BELMACH0
BIG-CHAR:
This is a subroutine designed to be called by other programs, by putting the desired ASCII value in r0 and calling $3700. The imagery for the character set is at $3000..$32FF. See the commented disassembly of this program for more details.
BMK
CHRPRNTR
CLEARMEM:
This works but takes a few moments.
COPY
This installs these routines:
800G show this help
803G read cassette to RAM
806G save RAM to cassette
809G continue read after error

DASS6800
FORTH-01
FUN-CLOCK
GEINTJE
GETS-002:
Unsure what it is showing.
Eventually gets into an infinite output loop.

GRAPJE-1..5
KLOK:
The emulator is too fast, or the "game" is too slow, by a 1:120 ratio (0.8%).
KRANT
L-KRANT
MODESTA,B,C,N (all except MODEST itself)
MWBAS-04,05,06 (all except 00 and M6):
Type NEW at startup, otherwise it will always just say "FILE ERROR".
MWBAS, 14A-MWBAS-06, 20A-MWBAS-06, MWBAS-M6 are the 24/12/1983 version.
13A-MWBAS-06 is the 23/4/1984 version.
MWBAS-07 is the 6/11/2010 version.
MWBAS-00, MWBAS-05 are undated.

OTHELLO
PASS (both dumps)
PAUZE
PEDT-004
PEDT-0A3
PIANO
PMONmini
QASS-003
RAMTEST
RUNLIGHT
SEE-C374:
Usage: U
Type eg. U0 to start viewing memory from address $0000.

SEE-CHAR:
Usage: 800G
Type eg. 800G0 to start viewing memory from address $0000.

SEE-EXT (all dumps)
all games in the MicroWorldBASIC/ directory

These dumps are incompatible, problematic or otherwise unusable:

300-BAUD
BASIO-20 (It reads from extended I/O port(s) for some reason; possibly non-PHUNSY. Maybe it's eg. the CD2650 extended basic functions. Needs investigation.)
CASSDISK
CDC-I/O (It's expecting there to be code at $6003 and there isn't any.)
CLOCK (10-A and 16-A. FUN.MDCR version is OK.)
CONV2>0 (This gosubs to $19EC (which doesn't contain anything) for some reason.)
CONV6>2
COPYOV
DAME (This is an ASCII picture.)
DISK
FLXWR-02
FORTH-00
FPRINTER
GRAPHICS
GRAPHS
HEXDUMP
I/OPACK (This seems to expect a different BIOS.)
LKRANT
MEMTA (Flashes INPUT ERR very briefly. Probably needs arguments to be provided.)
MODEST (both dumps)
MWBAS-00
MWBAS-M6
PALASM
PCITALK (Reads/writes from/to extended I/O port(s) for some reason.)
PH-CHR
PHCSRD (This tries to read from the cassette (via the Sense pin).)
PHEDTR2 (both dumps) (This reads from extended I/O ports for some reason.)
PORT9600
PRPRG ((E)PR(OM) Pr(o)g(rammer)? Has PHUNSY monitor 04-P4 (special edition?) in it, and Malotaux programmer, and data for various non-Signetics chips.
READHEX
ROW->COL (both dumps)
SCR
SEND-JET (This jumps to $1914 (which doesn't contain anything) for some reason.)
SER-I/O
SOUTCASS
TERML
TPRINT-S
TPRINTER (both dumps)
TRNR-001
ZOOI

The reasons are various, eg.:

the program is accessing unemulated hardware (eg. SER-I/O);
the "program" is really just a subroutine library for use by other programs (eg. BIG-CHAR);
the "program" is really just data;
the program might just have bugs (eg. FORTH-00?);
the program might be a bad dump;
the program is expecting command line arguments (eg. SEE-CHAR);
the program is not intended to produce any output (eg. CLEARMEM);
etc.

Translations of game names:

Dutch English
Dame Lady
Krant Newspaper
Liedjes Songs
Zooi Mess

Ravensburger Selbstbaucomputer

Region Size No BIOS With BIOS
$0000..$07FF 2K user RAM 2716 BIOS ROM or 28C16 BIOS EEPROM (bottom left of memory card)
$0800..$08FF 0.25K user RAM? 6116 BIOS RAM (top left of memory card)
$0900..$0FFF 1.75K user RAM? 6116 user RAM (top left of memory card)
$1000..$17FF 2K user RAM? 6116 RAM, 2716 ROM, or 28C16 EEPROM (bottom right of memory card)
$1800..$1FFF 2K user RAM? 6116 RAM, 2716 ROM, or 28C16 EEPROM (top right of memory card)
$2000..$7FFF 24K unmapped? unmapped?

"Selbstbaucomputer" translates to "Self-built computer". The subsystems of this system are:

No. German English Pages
1 Netzteil Power supply 69-80
2 Busplatte Bus board or backplane 81-92
3 Daten eingabe anzeige Data input display 93-110
4 CPU CPU 111-140
5 Addressen eingabe anzeige Address input display 141-147
6 Speicher Memory 148-172
7 Porteinheit Port unit 173-189
8 A/D-Wandler A/D converter (analog-to-digital converter) 190-212
9 Tastatur & anzeige Keyboard & display 213-239
10 Casetten-interface Cassette interface 240-249

The system could also be operated without any monitor! With this mode, you enter your code with a binary address switch and data switch in single step mode ;-) You start at address $0. After entering your program, you could run it at 1 Hz or 1 MHz, or stay in single step mode.

From the games book (autotranslated from German):

"At the beginning of all programs is the hardware used. "Basic version" means: CPU, data and address input and output, RAM memory and port module, without EPROM and without keyboard and display unit. In these cases is the switch on the memory card in Position "1" to bring so that the RAM area begins at address $0000. If you have the keyboard and display unit use the switch on the memory card in position "2" standing, so that the EPROM is at the beginning of the addressing area. Then you can use the data and address input and output units from detach from the bus plate. You can but also leave them connected. In the case need the data switch There in position DAFLOT and the Address switch Adr in position ADFLOT standing, otherwise nothing works. These two construction stages are of use to you then if you have a program in Single-STEP or single-CLOCK clock through then the switch must STEP-RUN on the keyboard in stand in the STEP position so that the seven-segment displays in case of her activation not be overloaded. You can then observe the program progress on the data and observe address input and output."

The 24-key keyboard is as follows:

...C... ...D... ...E... ...F... ..CMD.. .FLAG..
...8... ...9... ...A... ...B... ..RUN.. ..MON..
...4... ...5... ...6... ...7... ..GOTO. ..PC...
...0... ...1... ...2... ...3... ..RST.. ..NXT..

By default, these are mapped to the following host keys (on Ami/WinSelbstbaucomputer):

...a1.. ...a2.. ...a3.. .NumLk. ...n/.. ...n*..
...Q... ...W... ...E... ...n7.. ...n8.. ...n9..
...A... ...S... ...D... ...n4.. ...n5.. ...n6..
...Z... ...X... ...C... ...n1.. ...n2.. ...n3..

Diode colours are:

Diode Colour
CLOCK red
OPACK green
OPREQ yellow
M/IO red
RUN/WAIT green
WRP red
FLAG red

Monitor BIOS

V0.9 BIOS functions:

HEXDEZ (ZBSR,un  *$3) @ $5E9 HEXBCD
CONV   (ZBSR,un  *$5) @ $230 CONVT
SEP    (ZBSR,un  *$7) @ $207 SEPNIB
COMB   (ZBSR,un  *$9) @ $21E COMNIB
DIS    (ZBSR,un  *$B) @  $E5 DISP
KIN    (ZBSR,un  *$D) @  $C4 KIN1
INIT   (ZBSR,un  *$F) @ $235 INIT1
SAVE   (ZBSR,un *$11) @ $24E INIT2
RECAL  (ZBSR,un *$13) @ $272 INIT3
CDIS   (ZBSR,un *$15) @ $296 CDISP
BPGOT  (ZBSR,un *$17) @ $574 BPFND
LODAT  (ZBSR,un *$19) @ $149 LOAD
ADDSUB (ZBSR,un *$1B) @ $6A0 ADSB
MULT   (ZBSR,un *$1D) @ $6CD MPYS
DIV    (ZBSR,un *$1F) @ $700 DIVS
DEZHEX (ZBSR,un *$21) @ $649 BCDHEX
SEPD   (ZBSR,un *$23) @ $197 SEPDIS
HEXD   (ZBSR,un *$25) @ $774 HEXD1
DHEX   (ZBSR,un *$27) @ $79D DHEX1
HEX    (ZBSR,un *$29) @ $79F DHEX2
DEZ    (ZBSR,un *$2B) @ $776 HEXD2
ERROR  (ZBSR,un *$2D) @ $432 ERR

Note that byte $673 of the V0.9 BIOS is not listed in the PDF. Its correct value has been ascertained to be $82.

V2.0 BIOS functions:

KIN    (ZBSR,un *$14) @ $384 KBIN
WBL    (ZBSR,un *$16) @ $16A WRBL
WCH    (ZBSR,un *$18) @ $425 WCHR
INPHX  (ZBSR,un *$1A) @ $1B6 INHX
OUTHX  (ZBSR,un *$1C) @  $4F HXO
LINEF  (ZBSR,un *$1E) @  $45 LFC
PUT    (ZBSR,un *$20) @ $2C1 SERO
GET    (ZBSR,un *$22) @ $35E SERI
HXTAB  (ZBSR,un *$24) @ $19A TABL
ADRES  (ZBSR,un *$26) @ $185 ADDR
CONTR  (ZBSR,un *$28) @ $48C CR
HO     (ZBSR,un *$2A) @ $4E5 HOME1
CURSL  (ZBSR,un *$2C) @ $4EE CURL3
CURSR  (ZBSR,un *$2E) @ $52B CURR1
CURSU  (ZBSR,un *$30) @ $5E6 CUUP1
CURSD  (ZBSR,un *$32) @ $4C2 LF1
SCCLR  (ZBSR,un *$34) @ $4CA CLR2
BACK   (ZBSR,un *$36) @ $51A BACK1

Monitor commands are:

Alter
B
C
Dump
E
I
Load
R
Verify

Game Help

These programs are contained in the "2650 Programme.pdf" book:

German Name English Translation
440-Hz-Programm zum Abgleich des CLOCK-Oszillators 440 Hz program for the adjustment of clock oscillator
Portadressierung Port addressing
Einfache Addition Simple addition
Einfache Subtraktion Simple subtraction
Einfache Multiplikation Simple multiplication
Einfache Division Simple division
Verkehrsampel 1 Traffic lights 1
Blinklicht Beacon
Würfel Dice
Metronom Metronome
Lauflicht Running light
Voltmeter mit dualer Anzeige Dual display voltmeter
Denkzeitbegrenzer Think time limiter
Verkehrsampel 2 Traffic lights 2
VU-Meter Vumeter
Laufschrift Scrolling text
Würfelspiel Dice game
Reaktionstest Reaction test
Stoppuhr Stopwatch
Digitaluhr Digital clock
HEX-DEZ-HEX-Wandlung Hexadecimal-decimal-hexadecimal conversion
HEX-Rechnen Hexadecimal calculation
DEZ-Rechnen Decimal calculation
Lottozahlen Lotto numbers
Morse-Übungsprogramm Morse code practice
Voltmeter 2 (3stellig dezimal) Voltmeter 2 (3-digit decimal)

DecCalculation.aof:

The entire program is as follows:

for (;;)
{ gosub GDEZ;
  *($827) = r3;
  *($828) = r2;
  do
  { gosub KIN;
    r3 = *($800);
    REGS = r3;
  } while (r3 <= $0F || r3 >= $50);
  gosub GDEZ;
  *($829) = r3;
  *($82A) = r2;
  r3 = REGS;
  switch (r3)
  {
  case  '-': PSL |= COM ; gosub ADDSUB;
  acase '+': PSL &= ~(COM); gosub ADDSUB;
  acase '*': gosub MULT;
  acase '/': gosub DIV;
  adefault:  r3 = *($812) = '3'; // 6th digit
             goto ERROR;
  }
  gosub HEXD;
  gosub KIN;
}

GDEZ:
do
{ gosub CDIS;
  gosub KIN;
  PSL &= ~(WC);
  r3 = *($800);
  if (r3 == '+')
  { *($8FF) = '+';
    r3 = *($80D) = 'P'; // 1st digit
  } elif (r3 == '-')
  { *($8FF) = '-';
    r3 = *($80D) = '-'; // 1st digit
} }
while (*($800) != '+' && *($800) != '-');
r2 = *($82D) = 5;
gosub LODAT;
r3 = $20;
if (*($8FF) != '-')
{ *($81A) |= $90;
}
*($82E..$830) = *($81A..$81C);
gosub DEZHEX;
r3 = *($82B);
r2 = *($82C);
return;

Dice.bin:

This shows the number in binary on the glow LEDs; ie:

.......* means 1 was rolled
......*. means 2 was rolled
......** means 3 was rolled
.....*.. means 4 was rolled
.....*.* means 5 was rolled
.....**. means 6 was rolled

DiceGame.bin:

The entire program is as follows:

for (;;)
{ *($80D..$812) = 0;
  *($81B) = 0;
  for (i = 0; i < 3; i++)
  { gosub RANDOM;
    gosub SUMME;
    gosub CONV;
    *($80D + i) = r3; // 1st..3rd segments
    gosub KIN;
} }

SUMME:
*($81C) = r3;
*($81B) += r3;
*($82B) = 0;
*($82C) = r3;
gosub HEXDEZ;
r3 = *($830);
*($801) = r3;
gosub SEP;
r3 = *($801);
gosub CONV;
*($811) = r3; // 5th segment
r3 = *($802);
gosub CONV;
*($812) = R3; // 6th segment
r3 = *($81C);
return;

RANDOM:
r0 = PSU & Sense;
NEW:
r3 = 0;
LOOP:
r3++;
if (r3 == 7) goto NEW;
r0 = PSU & Sense;
compare r0 against *($815);
if (==) goto LOOP;
return;

LottoNumbers.aof:

The entire program is as follows:

gosub CDIS; // clear display
*(LOTTO..LOTTO+14) = 0; // or, *($8F0..$8FE) = 0;
RSLT = 0;
for (*($8F7) = 1; *($8F7) <= 7; *($8F7)++)
{ *(LOTTO + *($8F7)) = RANDOM();
  *($82C) = *($8F7);
  gosub HEXDEZ;
  r3 = *($830);
  DATA2 = r3;
  gosub SEP;
  *($812) = CONV(DATA3); // 6th digit
  *($811) = CONV(DATA2); // 5th digit
  *($80D) = CONV(*($8F7)); // 1st digit
  gosub KIN;
}
goto START;

RANDOM:
WBUF = PSU & Sense;
for (r3 = 1; r3 <= 49; r3++)
{ if ((PSU & Sense) != WBUF)
  { r0 = r3;
  for (r2 = 1; r2 <= 7; r2++)
  { if (r0 == *(LOTTO + r2))
    { goto RANDOM;
  } } } }
return; // result is in r0 and also in r3

$830 is the number that has just been drawn (1..49).
$8F1..$8F6 are the drawn numbers.
$8F7 is the sequence number (1..3).

The randomizer constantly cycles through 1..49 and stops as soon as the Sense bit changes.

Morse Code Practice:

The data table is as follows:

Character Data Morse Notes
A $0240 %.-000000 -
B $0480 %-...0000 -
C $04A0 %-.-.0000 -
D $0380 %-..00000 -
E $0100 %.0000000 -
... ... ... ...
Z $04C0 %--..0000 -
0 $05F8 %-----000 -
1 $0578 %.----000 -
... ... ... ...
9 $05F0 %----.000 -
= $0588 %-...-000 -
; $06A8 %-.-.-.00 -
, $06CC %--..--00 -
- $0684 %-....-00 -
/ $0590 %-..-.000 -
: $06E0 %---...00 -
? $0630 %..--..00 -
. $0654 %.-.-.-00 -
  $05A8 %-.-.-000 Starting signal (/KA aka /CT)
+ $0550 %.-.-.000 New message follows (/RN aka /AR)

MIKIT 2650

Region Size MIKIT 2650-K1, 2650-P1 MIKIT 2650-K21, 2650-P21, 2650-K1+2650-K2
$0000..$01FF 512 bytes BIOS ROM BIOS ROM
$0200..$03FF 512 bytes unmapped? BIOS ROM
$0400..$041F 32 bytes BIOS RAM BIOS RAM
$0420..$04FF 234 bytes user RAM user RAM
$0500..$07FF 768 bytes unmapped? user RAM
$0800..$7FFF 30K unmapped? unmapped?

Both versions support keypad input and LED output.
MIKIT 2650-K1, 2650-P1 have 4 I/O ports, 512 bytes of ROM, 256 bytes of RAM.
MIKIT 2650-K21, 2650-P21, 2650-K1+2650-K2 have 8 I/O ports, 1K of ROM, 1K of RAM, and support cassette and teletype I/O.

The 8 glow LEDs controlled by writing to the Control port (WRTC).
The 6 LED digits are at $402..$407 (in BIOS RAM).
$FD is the entry point to the BIOS display routine.
The cassette recorder uses port 227 ($E3) for input and port 228 ($E4) for output.
The teletype uses port 229 ($E5) for input and port 226 ($E2) for output.

The 24-key keyboard is as follows:

.BLANK. ...R... ...C... ...D... ...E... ...F...
...+... ...G... ...8... ...9... ...A... ...B...
...H... ...P... ...4... ...P... ...6... ...7...
...L... ...S... ...0... ...1... ...2... ...3...

BLANK = ?
R = Read
+ = Add?
G = Go
H = Halt
P = Punch
L = Load
S = Store

By default, these are mapped to the following host keys (on Ami/WinMIKIT):

...a1.. ...a2.. ...a3.. .NumLk. ...n/.. ...n*..
...Q... ...W... ...E... ...n7.. ...n8.. ...n9..
...A... ...S... ...D... ...n4.. ...n5.. ...n6..
...Z... ...X... ...C... ...n1.. ...n2.. ...n3..

Game Help

Stufenzaehler (Program 5):

The entire program is as follows:

enable interrupts
use main register bank
clear With Carry
set signed compare
for (;;)
{ for (r1 = 1, r3 = N; r3 > 0; r1++, r3--)
  { r0 = *(&A + r3);
    if (r1 == r0)
    { PORTC = r1;
    }
    while (PORTC != *(&B + r3));
} }

Ein- und Aus-Schaltbare Blinklampe (Program 7):

The entire program is as follows:

enable interrupts
use main register bank
clear With Carry
set signed compare
AUS:
use main register bank
PORTC = ........; // clear glow LEDs
while (PORTC & %10000000);
for (;;)
{ PORTC = .......#; // light one glow LED
  for (r4 = 256; r4 > 0; r4--)
  { for (r5 = 48; r5 > 0; r5--)
    { if (PORTC & %00000001 == %00000000)
      { goto AUS;
  } } }
  PORTC = ........; // clear glow LEDs
  for (r4 = 256; r4 > 0; r4--)
  { for (r5 = 48; r5 > 0; r5--)
    { if (PORTC & %00000001 == %00000000)
      { goto AUS;
} } } }

Elektronischer Würfel (Program 8):

The entire program is as follows:

enable interrupts
use main register bank
clear With Carry
set unsigned compare
*($402..$407) = $66;
for (;;)
{ for (r1 = 6; r1 > 0; r1--)
  { gosub $FD;
    if (PORTC & %10000000 == %00000000)
    { *($407) = r1;
      do
      { gosub $FD;
        r0 = PORTC;
      } while (r0 >= 1 && r0 <= 127);
} } }

Reaktionzeittest (Program 12):

Press any key to begin.
As soon as the numbers begin incrementing, press eg. the '1' key.

Codiertes Schloss (Program 13):

You have to press three keys in succession within limited times.
The keys you have to press are stored in *($52A..$52C) (in reverse order).
COD is $529.
Press 1, then 2, then 3.
The entire game is as follows:

enable interrupts
use main register bank
clear With Carry
set unsigned compare
PORTC = 0; // clear glow LEDs
while (PORTC != *($52D)); // wait for first key
for (r1 = 2; r1 >= 0; r1--)
{ for (r2 = 256; r2 > 0; r2--)
  { wait
    if (PORTC == *(&COD + r1)) // if pressed correct key
    { goto S1;
  } }
  PORTC = ########; // lose
  for (;;);
S1:
  ;
}
PORTC = #.#.#.#.; // win
for (;;);

Coin-ops

MAME 0.277 compatibility table (non-pinball non-bootleg coin-ops only):

Name Company Year Colours Graphics Sound Flipping Conversion kit
OR CE DK GA PM SC
3-D Bowling Meadows 1978 100% 100% 0% Yes OR
8 Ball Action Meadows 1978 100% 100% 100% Yes DK PM
Astro Wars Zaccaria 1980 100% 99% 99% No OR
Bigfoot Bonkers Meadows 1976 100% 100% 100% Yes OR
Bulls Eye Darts Senko/Shinkai 1985 0% 99/100% 100% Yes CE GA
Cat and Mouse Zaccaria 1982 100% 100% 99% Yes OR
Continental (bingo) Bally 1980 - - 0% - OR
Cosmos Century 1981 100% 100% 99% No OR
Dark Warrior Century 1981 100% 100% 99% No OR
Dazzler Century 1982 100% 100% 99% No OR
Dead Eye Meadows 1978 100% 100% 100% Yes OR
Digger Century 1982 100% 100% 99% No OR
Dodgem Zaccaria 1979 100% 100% 99% Yes OR
Driving Force Shinkai 1984 100% 100% 100% Yes GA PM
Embargo Cinematronics 1977 100% 100% 0% Yes OR
Galaxia Zaccaria 1979 100% 99% 99% No OR
Gold Bug Century 1982 100% 100% 99% No OR
Gypsy Juggler Meadows 1978 100% 99% 100% Yes OR
Heart Attack Century 1983 100% 100% 99% No OR
Herbie at the Olympics Seatongrove 1984 100% 100% 100% Yes DK
Hero 1 Seatongrove 1984 100% 100% 100% Yes OR
Hero 2 Seatongrove 1984 100% 100% 100% Yes DK
Hex Pool Senko 1985 100% 100% 100% Yes GA
Hunchback Century 1983 100% 100% 99/100% No/Yes OR DK GA SC
Hunchback Olympic Seatongrove 1984 100% 100% 99/100% No/Yes OR SC
Inferno Meadows 1978 100% 100% 0% Yes OR
Laser Battle & Lazarian Zaccaria 1981 100% 100% 99% Yes OR
Lazer Command Meadows 1976 100% 100% 100% Yes OR
Logger Century 1982 100% 100% 99% No OR
Malzak 1 & 2 Kitronix 198x 1% 1% 1% - OR
Outline & Radar Zone Century 1982 100% 100% 99% No OR
Porky Shinkai 1985 100% 100% 100% Yes PM
Quasar Zaccaria 1980 100% 100% 99% No OR
Quiz Show Kee 1976 - - - - OR
Raiders Century 1983 100% 100% 99% No OR
Rack + Roll Senko 1986 100% 100% 100% Yes GA
Sea Battle & Armada Zaccaria 1980 99% 99% 0% Yes OR
Shooting Gallery Seatongrove 1984 100% 100% 99% Yes DK
Space Fortress Century 1981 100% 100% 99% No OR
Space Warp? Cosmos 1983 0% - - - GA
Special Forces 1 & 2 Senko 1985 100% 100% 100% Yes DK
Sub Hunter Model Racing 1979 - - 0% - OR
Superbike Century 1983 100% 100% 99% No OR DK GA
The Invaders Zaccaria 1979? 100% 100% 99% Yes OR
Trivia Challenge Senko 1985 - - - - GA
Video 8 Ball Century 1982 100% 100% 99% No OR
Wall Street Century 1982 100% 100% 99% No OR

Conversion kits are:

OR = Original
CE = Centipede
DK = Donkey Kong/Donkey Kong Jr.
GA = Galaxian [sic]
PM = Pac-Man
SC = Scramble

These Zaccaria non-pinball coin-ops do not use a 2650 (all others do):

Jack Rabbit
Money Money
Motor Show
Scorpion

Coin-op originals of (presumably or explicitly) licenced ports to Arcadia-family consoles:

Name Licensor Year Graphics Sound Flipping CPU(s)
Astro Invader Konami 1981 100% 99% Yes Z80
Circus Exidy? 1977 100% 99% Yes 6502
Crazy Climber Nichibutsu? 1980 100% 100% Yes Z80
Funky Fish Tekhan 1981 100% 100% Yes 2*Z80
Jump Bug Coreland 1981 100% 99% Yes Z80
Jungler Konami 1981 100% 100% Yes 2*Z80
Pleiades Tekhan 1981 99% 100% Yes 8085A
R2D Tank Sigma 1980 100% 100% Yes 6802+6809
Red Clash Tehkan 1981 99% 99% Yes Z80
Route 16 Tekhan 1981 100% 100% Yes 2*Z80
Spiders Sigma 1981 100% 99% Yes 6802+6809
The End Konami 1980 100% 100% Yes 2*Z80
Turtles/Turpin Konami 1981 100% 100% Yes 2*Z80

Malzak

Region Size Malzak 1 Malzak 2
$0000..$07FF 2K from $0000..$07FF of malzak.5 (ROM code) from $0000..$07FF of malzak.1a (ROM code)
$0800..$0BFF 1K from $0000..$03FF of malzak.4 (ROM code) from $0000..$03FF of malzak.2b (ROM code)
$0C00..$0FFF 1K from $0000..$03FF of malzak.3 (ROM data) (screen data?) banked area (controlled by bit 6 of I/O port $40)
Malzak 1: from $0000..$03FF of malzak.4d (ROM data) (screen data)
Malzak 2: from $0400..$07FF of malzak.4d (ROM data) (screen data)
$1000..$13FF 1K RAM RAM
$1400..$14FF 256 bytes 1st PVI 1st PVI
$1500..$15FF 256 bytes 2nd PVI 2nd PVI
$1600..$16FF 256 bytes playfield tilemap playfield tilemap
$1700..$17FF 256 bytes RAM NVRAM
$1800..$1E3F 1600 bytes teletext screen contents teletext screen contents
$1E40..$1FFF 448 bytes RAM? RAM?
$2000..$27FF 2K from $0800..$0FFF of malzak.5 (ROM code) from $0800..$0FFF of malzak.1a (ROM code)
$2800..$2BFF 1K empty from $0800..$0BFF of malzak.2b
$2C00..$2FFF 1K empty empty
$3000..$3FFF 4K mirror of $1000..$1FFF mirror of $1000..$1FFF
$4000..$43FF 1K from $0400..$07FF of malzak.4 (ROM code) (terrain code) from $0400..$07FF of malzak.2b (ROM code) (terrain code)
$4400..$4BFF 2K from $0000..$07FF of malzak.3 (ROM data) (terrain data) banked area? If so...
Malzak 1: from $0000..$07FF of malzak.3 (ROM data) (terrain data)
Malzak 2: from $0000..$07FF of malzak.3c (ROM data) (terrain data)
$4C00..$4FFF 1K empty empty
$5000..$5FFF 4K mirror of $1000..$1FFF mirror of $1000..$1FFF
$6000..$63FF 1K empty from $0C00..$0FFF of malzak.2b
$6400..$6FFF 3K empty empty
$7000..$7FFF 4K mirror of $1000..$1FFF mirror of $1000..$1FFF

malzak.1 (containing tile imagery) is not accessible to the CPU, nor is the teletext character imagery. Both are identical between Malzak 1 and Malzak 2.
$1xxx is deliberately mirrored at $3xxx, $5xxx, $7xxx, because on the 2650, you can only access data on the same 8K page, so mirroring is very useful for the game programmer (otherwise code in the $2000..$7FFF region could not directly access any of the RAM).

For Malzak 2, if *($14CC) is $00 (ie. test switch is at position 4), the game will enter test mode when booting. When it enters test mode, it clears the settings first.

Input devices are:

8-way digital joystick
P1, P2 buttons
Firebutton
Coin slot
Test switch (Malzak 2 only)

Input bits are:

Bit 7: up (active high)
Bit 6: left (active high)
Bit 5: right (active high)
Bit 4: fire (active high)
Bit 3: 2P (active high)
Bit 2: 1P (active high)
Bit 1: down (active high)
Bit 0: coin slot (active low)

Maps of Malzak 1 and 2 are available in the Maps Pack at http://amigan.yatho.com/maps.rar.

When you run out of fuel, your ship falls out of the sky, but your exhaust continues to burn and does not fall. This is probably authentic.

Astro Wars & Galaxia

Region Size Astro Wars Galaxia
$0000..$03FF 1K from $0000..$03FF of 08h.bin (ROM) from $0000..$03FF of 08h.bin (ROM)
$0400..$07FF 1K from $0000..$03FF of 10h.bin (ROM) from $0000..$03FF of 10h.bin (ROM)
$0800..$0BFF 1K from $0000..$03FF of 11h.bin (ROM) from $0000..$03FF of 11h.bin (ROM)
$0C00..$0FFF 1K from $0000..$03FF of 13h.bin (ROM) from $0000..$03FF of 13h.bin (ROM)
$1000..$13FF 1K from $0000..$03FF of 08i.bin (ROM) from $0000..$03FF of 08i.bin (ROM)
$1400..$14FF 256 bytes RAM banked:
when Flag bit of PSU is clear: bullet RAM
when Flag bit of PSU is set: palette RAM (16 bytes)
$1500..$15FF 256 bytes PVI 1st PVI
$1600..$16FF 256 bytes unmapped? 2nd PVI
$1700..$17FF 256 bytes unmapped? 3rd PVI
$1800..$1BFF 1K banked:
when Flag bit of PSU is clear: screen colours
when Flag bit of PSU is set: screen contents
banked:
when Flag bit of PSU is clear: screen colours
when Flag bit of PSU is set: screen contents
$1C00..$1CFF 256 bytes banked:
when Flag bit of PSU is clear: bullet RAM
when Flag bit of PSU is set: palette RAM (16 bytes)
RAM
$1D00..$1FFF 768 bytes unmapped? RAM
$2000..$23FF 1K from $0000..$03FF of 10i.bin (ROM) from $0000..$03FF of 10i.bin (ROM)
$2400..$27FF 1K from $0000..$03FF of 11i.bin (ROM) from $0000..$03FF of 11i.bin (ROM)
$2800..$2BFF 1K from $0000..$03FF of 13i.bin (ROM) from $0000..$03FF of 13i.bin (ROM)
$2C00..$2FFF 1K from $0000..$03FF of 11l.bin (ROM) from $0000..$03FF of 11l.bin (ROM)
$3000..$33FF 1K from $0000..$03FF of 13l.bin (ROM) from $0000..$03FF of 13l.bin (ROM)
$3400..$3FFF 3K mirror of $1400..$1FFF mirror of $1400..$1FFF
$4000..$53FF 5K unknown unknown
$5400..$5FFF 3K mirror of $1400..$1FFF mirror of $1400..$1FFF
$6000..$73FF 5K unknown unknown
$7400..$7FFF 3K mirror of $1400..$1FFF mirror of $1400..$1FFF

In Astro Wars, the yellow sprites are meteors, not bullets; this explains why they do not emanate from the enemy ships.

Laser Battle & Lazarian

Region Size Laser Battle Lazarian
$0000..$03FF 1K from $0000..$03FF of lb02.7c/laz.7c/02-1.7c from $0000..$03FF of lb02.7c/laz.7c/02-1.7c
$0400..$07FF 1K from $0000..$03FF of lb02.6c/laz.6c/02-2.6c from $0000..$03FF of lb02.6c/laz.6c/02-2.6c
$0800..$0BFF 1K from $0000..$03FF of lb02.5c/laz.5c/02-3.5c from $0000..$03FF of lb02.5c/laz.5c/02-3.5c
$0C00..$0FFF 1K from $0000..$03FF of lb02.3c/laz.3c/02-4.3c from $0000..$03FF of lb02.3c/laz.3c/02-4.3c
$1000..$13FF 1K from $0000..$03FF of lb02.2c/laz.2c/02-5.2c from $0000..$03FF of lb02.2c/laz.2c/02-5.2c
$1400..$14FF 256 bytes unused unused
$1500..$15FF 256 bytes 1st PVI 1st PVI
$1600..$16FF 256 bytes 2nd PVI 2nd PVI
$1700..$17FF 256 bytes 3rd PVI 3rd PVI
$1800..$1BFF 1K display RAM (write-only) display RAM (write-only)
$1C00..$1FFF 1K user RAM user RAM
$2000..$23FF 1K from $0000..$03FF of lb02.7b/laz.7b/02-6.7b from $0000..$03FF of lb02.7b/laz.7b/02-6.7b
$2400..$27FF 1K from $0000..$03FF of lb02.6b/laz.6b/02-7.6b from $0000..$03FF of lb02.6b/laz.6b/02-7.6b
$2800..$2BFF 1K from $0000..$03FF of lb02.5b/laz.5b/02-8.5b from $0000..$03FF of lb02.5b/laz.5b/02-8.5b
$2C00..$2FFF 1K from $0000..$03FF of lb02.3b/laz.3b/02-9.3b from $0000..$03FF of lb02.3b/laz.3b/02-9.3b
$3000..$33FF 1K from $0000..$03FF of lb02.2b from $0800..$0BFF of laz10-62.2b
$3400..$37FF 1K mirror of $1400..$17FF mirror of $1400..$17FF
$3800..$3BFF 1K mirror of $1800..$1BFF? from $0000..$03FF of laz10-62.2b
$3C00..$3FFF 1K mirror of $1C00..$1FFF mirror of $1C00..$1FFF
$4000..$43FF 1K from $0400..$07FF of lb02.7c/laz.7c/02-1.7c from $0400..$07FF of lb02.7c/laz.7c/02-1.7c
$4400..$47FF 1K from $0400..$07FF of lb02.6c/laz.6c/02-2.6c from $0400..$07FF of lb02.6c/laz.6c/02-2.6c
$4800..$4BFF 1K from $0400..$07FF of lb02.5c/laz.5c/02-3.5c from $0400..$07FF of lb02.5c/laz.5c/02-3.5c
$4C00..$4FFF 1K from $0400..$07FF of lb02.3c/laz.3c/02-4.3c from $0400..$07FF of lb02.3c/laz.3c/02-4.3c
$5000..$53FF 1K from $0400..$07FF of lb02.2c/laz.2c/02-5.2c from $0400..$07FF of lb02.2c/laz.2c/02-5.2c
$5400..$5FFF 3K mirror of $1400..$1FFF? mirror of $1400..$1FFF?
$6000..$63FF 1K from $0400..$07FF of lb02.7b/laz.7b/02-6.7b from $0400..$07FF of lb02.7b/laz.7b/02-6.7b
$6400..$67FF 1K from $0400..$07FF of lb02.6b/laz.6b/02-7.6b from $0400..$07FF of lb02.6b/laz.6b/02-7.6b
$6800..$6BFF 1K from $0400..$07FF of lb02.5b/laz.5b/02-8.5b from $0400..$07FF of lb02.5b/laz.5b/02-8.5b
$6C00..$6FFF 1K from $0400..$07FF of lb02.3b/laz.3b/02-9.3b from $0400..$07FF of lb02.3b/laz.3b/02-9.3b
$7000..$73FF 1K from $0C00..$0FFF of lb02.2b/laz10-62.2b/02-10-11.2b from $0C00..$0FFF of lb02.2b/laz10-62.2b/02-10-11.2b
$7400..$77FF 1K mirror of $1400..$17FF? mirror of $1400..$17FF?
$7800..$7BFF 1K mirror of $1800..$1BFF? from $0400..$07FF of laz10-62.2b
$7C00..$7FFF 1K mirror of $1C00..$1FFF? mirror of $1C00..$1FFF?

Extended I/O port $02 is multiplexed among four inputs. The games write to extended I/O port $06 to control which input is selected. The input ports are (all active low):

Input Bit(s) Laser Battle Lazarian
$00 7 Button 4 (0=pressed, 1=unpressed) Button 4 (0=pressed, 1=unpressed)
$00 6 Button 3 (0=pressed, 1=unpressed) Button 3 (0=pressed, 1=unpressed)
$00 5 Button 2 (0=pressed, 1=unpressed) Button 2 (0=pressed, 1=unpressed)
$00 4 Button 1 (0=pressed, 1=unpressed) Button 1 (0=pressed, 1=unpressed)
$00 3 Service A (0=pressed, 1=unpressed) Service A (0=pressed, 1=unpressed)
$00 2 Coin B (0="pressed", 1="unpressed") Coin B (0="pressed", 1="unpressed")
$00 1 P2 start (0=pressed, 1=unpressed) P2 start (0=pressed, 1=unpressed)
$00 0 P1 start (0=pressed, 1=unpressed) P1 start (0=pressed, 1=unpressed)
$10 7 Reset (0="pressed", 1="unpressed") Reset (0="pressed", 1="unpressed")
$10 6 Coin A (0="pressed", 1="unpressed") Coin A (0="pressed", 1="unpressed")
$10 5 ? ?
$10 4 ? ?
$10 3 ? ?
$10 2 ? ?
$10 1 ? ?
$10 0 ? ?
$20 7 Collision detection (0=off, 1=on) Collision detection (0=off, 1=on)
$20 6 Infinite lives (0=off, 1=on) Calibration display (0=off, 1=on)
$20 5..4 Lives:
%00 = 2 lives
%01 = 3 lives
%10 = 5 lives
%11 = 6 lives
Lives:
%00 = 2 lives
%01 = 3 lives
%10 = 4 lives
%11 = 5 lives
$20 3..2 Coin B generosity:
%00 = 2 credits
%01 = 3 credits
%10 = 5 credits
%11 = 7 credits
Coin B generosity:
%00 = 2 credits
%01 = 3 credits
%10 = 5 credits
%11 = 7 credits
$20 1..0 Coin A generosity:
%00 = 1 credit
%01 = 2 credits
%10 = 3 credits
%11 = 5 credits
Coin A generosity:
%00 = ½ credit
%01 = 1 credit
%10 = 2 credits
%11 = 3 credits
$30 7 Joystick down (0=yes, 1=no) Joystick down (0=yes, 1=no)
$30 6 Joystick up (0=yes, 1=no) Joystick up (0=yes, 1=no)
$30 5 Joystick right (0=yes, 1=no) Joystick right (0=yes, 1=no)
$30 4 Joystick left (0=yes, 1=no) Joystick left (0=yes, 1=no)
$30 3 ? ?
$30 2 ? Freeze (0=off, 1=on)
$30 1 ? Firing (0=rapid, 1=normal)
$30 0 ? ?

Zaccaria Pinball for Android

Here is how to run the latest version of Zaccaria Pinball (on Android 4.4+), with all tables. Unfortunately an internet connection is required during play and there is only one ball (man/life) per game.

1. Go to https://d.apkpure.com/b/XAPK/hu.magicpixel.Zaccaria?versionCode=25 which will download Zaccaria Pinball_4.0.3_APKPure.apkx (1,049,698,248 bytes).

2. Rename Zaccaria Pinball_4.0.3_APKPure.apkx as Zaccaria Pinball_4.0.3_APKPure.zip

3. Extract this ZIP.

4. Make a new directory (folder): Internal storage/Android/obb/hu.magicpixel.Zaccaria

5. Move main.25.hu.magicpixel.Zaccaria.obb from wherever it was unZIPped to (typically Downloads), to Internal storage/Android/obb/hu.magicpixel.Zaccaria

6. Install hu.magicpixel.Zaccaria.apk as normal (by clicking on it).

Zaccaria Pinball for Switch

Here is how to emulate the Switch version of Zaccaria Pinball on 64-bit Windows 11 (at least), with all tables. Unfortunately the emulator crashes a lot, so perhaps an alternative emulator should be used instead (but Yuzu EA 4176 has similar issues).

1. Download the emulator + keys + firmware package: Nintendo Switch Emulator ryujinx 1.1.1403 win x64.torrent .

2. Extract ryujinx-1.1.1403-win_x64.rar to eg. C:\EMULATORS .
If WinRAR complains that the file is corrupt, your WinRAR version is probably too old (eg. WinRAR 3.62 and earlier are definitely too old); you will need to download and install a more recent version of WinRAR from https://www.rarlab.com .

3. Extract prod.keys and title.keys from Prodkeys.net_v19.0.0.zip to C:\Users\username\AppData\Roaming\Ryujinx\system , replacing username with your username.

4. Make a directory C:\EMULATORS\ryujinx-1.1.1403-win_x64\BIOS and extract all files from Firmware 19.0.0.zip to there.

5. Download Zaccaria Pinball [010092400A678000]+[v1.0.4+72DLC][US]_Patched.xci.rar (1,370,161,805 bytes) from https://send.cm/u79fqcimms2j.

6. Make a directory C:\EMULATORS\ryujinx-1.1.1403-win_x64\GAMES and extract Zaccaria Pinball [010092400A678000]+[v1.0.4+72DLC][US](nsw2u)_Patched.xci into it.

7. Click "Options|Settings...|User Interface|Game Directories|Add...", choose C:\EMULATORS\ryujinx-1.1.1403-win_x64\GAMES and click OK.

8. Right-click the Zaccaria Pinball icon, click "Manage Title Updates", click "Bundled: Version 1.0.4", click "Save".

9. Right-click the Zaccaria Pinball icon, click "Manage DLC", click "Enable All", click "Save".

10. Double-click the Zaccaria Pinball icon to run the game.

Pull the plunger back and release to launch the ball. Click the left or right side of the screen to operate the appropriate flipper.

Zaccaria Pinball for Windows

Here is how to run the latest version of Zaccaria Pinball (on Windows 7/8/8.1/10/11), which otherwise would require Steam, without Digital Restrictions Management (DRM) and with all tables:

1. Download Zaccaria_Pinball_v20220905_Steam_RiP from https://filecrypt.cc/Container/066D918234.html .
Extract it all to somewhere (eg. C:\GAMES\ZACCARIA). The password is cs.rin.ru .
If WinRAR complains that the file is corrupt, your WinRAR version is probably too old (eg. WinRAR 3.62 and earlier are definitely too old); you will need to download and install a more recent version of WinRAR from https://www.rarlab.com .

2. Download Zaccaria_Pinball_v20220905_Cracks_Only from https://filecrypt.cc/Container/C2CFA101D4.html .
Extract everything from SSE_v1.4.3 directory into the same directory as previously (thus overwriting ZaccariaPinball.exe and steam_api.dll). The password is cs.rin.ru .

3. Optionally, you can create a desktop shortcut as follows:
3a. Click on an empty part of the desktop, right-click and choose "New|Shortcut".
3b. Click "Browse...".
3c. Navigate to where SmartSteamLoader.exe is located (eg. C:\GAMES\ZACCARIA), click the SmartSteamLoader.exe file, and click "OK".
3d. Click "Next...".
3e. Change the shortcut name to eg. "Zaccaria Pinball" or whatever and press ENTER.

4. If you want a better icon for the shortcut:
4a. Download the icon from https://cdn.cloudflare.steamstatic.com/steamcommunity/public/images/apps/444930/08bf6c6da88227cce20ef9e1993f128235a8a46f.ico (or "Save as.." the icon here on the right) into the same directory as SmartSteamLoader.exe (C:\GAMES\ZACCARIA or wherever).
4b. Click on the shortcut, right-click and choose "Properties".
4c. Click "Change Icon...".
4d. Click "Browse...".
4e. Double-click the 08bf6c6da88227cce20ef9e1993f128235a8a46f.ico file.
4f. Click "OK" twice.

5. At this point, you may be able to run SmartSteamLoader.exe to launch the game. If this does not work, undertake the below steps as necessary.

6. If you get errors about missing MSVCP100.dll and/or MSVCR100.dll files, or error 0xc000007b, you need either of these (your choice):
6a. Microsoft Visual C++ 2008 Redistributable Package (4,483,040 bytes) from https://download.microsoft.com/download/5/D/8/5D8C65CB-C849-4025-8E95-C3966CAFD8AE/vcredist_x86.exe. Run the installer.
Or:
6b. Microsoft Visual C++ 2010 SP1 Redistributable Package MFC Security Update (8,993,774 bytes) from https://download.microsoft.com/download/1/6/5/165255E7-1014-4D0A-B094-B6A430A6BFFC/vcredist_x86.exe. Run the installer and choose the "Repair" option.
(You need the x86 (32-bit) version even if you have an x64 (64-bit) CPU.)

7. If you get errors about missing OpenAL32.dll, you need OpenAL.
You can get this from https://openal.org/downloads/oalinst.zip.
Extract oalinst.exe anywhere and run it.

Links were valid as at January 2023. The support thread is at https://cs.rin.ru/forum/viewtopic.php?f=10&t=72437&e=0. If any links are no longer working, please advise; we have copies of all files archived.

Pinball games using a 2650 and/or made by Zaccaria:

Name Company Year MAME ZP Bonus CPU(s)
Aerobatics Zaccaria 1977 No Yes ? None
Black Belt Zaccaria 1986 0% Yes Yes 2650
Cinestar Zaccaria 1974 No Yes ? None
Circus (pinball) Zaccaria 1977 No Yes ? None
Clown (pinball) Zaccaria 1985 0% Yes Yes 2650
Combat (pinball) Zaccaria 1977 No Yes ? None
Devil Riders Zaccaria 1984 0% Yes Yes 2650
Earth, Wind, Fire Zaccaria 1981 0% Yes Yes 2650+8035
Farfalla Zaccaria 1983 0% Yes Yes 2650
Fire Mountain Zaccaria 1980 0% Yes No 2650
Future World Zaccaria 1978 0% Yes No 2650
Granada Zaccaria 1974 No Yes ? None
Hot Wheels Zaccaria 1979 0% Yes No 2650
House of Diamonds Zaccaria 1978 0% Yes No 2650
Locomotion Zaccaria 1981 0% Yes Yes 2650+8035
Lucky Fruit Zaccaria 1975 No Yes ? None
Magic Castle Zaccaria 1984 0% Yes Yes 2650
Mexico '86 Zaccaria 1986 0% Yes Yes 2650
Moon Flight Zaccaria 1976 No Yes ? None
Mystic Star Zaccaria 1986 0% Yes No 6800
Nautilus Zaccaria 1977 No Yes ? None
New Star's Phoenix Zaccaria 1987 0% No ? 2650
Pinball Champ '82 Zaccaria 1982 No Yes Yes ?
Pinball Champ '83 Zaccaria 1983 0% Yes Yes 2650
Pool Champion Zaccaria 1985 0% Yes Yes 2650
Red Show Zaccaria 1975 No Yes ? None
Robot Zaccaria 1985 0% Yes Yes 2650
Scramble (pinball) Tecnoplay 1987 0% No ? 2650
Shooting the Rapids Zaccaria 1979 0% Yes No 2650
Ski Jump (prototype) Zaccaria 1978 0% No ? SC/MP
Soccer Kings Zaccaria 1982 0% Yes Yes 2650
Space City (prototype) Zaccaria 1979 0% No ? SC/MP
Space Shuttle Zaccaria 1980 0% Yes No 2650+8035
Spooky Zaccaria 1987 0% Yes Yes 2650
Star God Zaccaria 1980 0% Yes No 2650
Star's Phoenix Zaccaria 1987 0% Yes Yes 2650
Strike Zaccaria 1978 0% Yes No SC/MP
Supersonic Zaccaria 1977 No Yes ? None
Thunder Man Apple Time 1987 0% No ? 2650
Time Machine Zaccaria 1983 0% Yes Yes 2650
Top Hand Zaccaria 1974 No Yes ? None
Tropical Zaccaria 1974 No Yes ? None
Universe Zaccaria 1977 No Yes ? None
Winter Sports (pinball) Zaccaria 1978 0% Yes No 2650
Wood's Queen Zaccaria 1976 No Yes ? None
Zankor Zaccaria 1986 0% Yes Yes 2650

MAME: MAME 0.277.
ZP: Zaccaria Pinball v20220905.
Bonus: whether the table has an annoying time-limited bonus ball.

1974-1977 games are electro-mechanical ("EM").
1978-1981 games are 1st generation solid state ("SS").
1982-1987 games are 2nd generation solid state ("SS").

Multiplatform

Comparative Tables

Platform Keyboard input VDU output Tape input Tape output Tape format Motor control
Emerson Arcadia 2001 Memory mapped Memory mapped n/a n/a n/a n/a
Interton VC 4000 Memory mapped Memory mapped n/a n/a n/a n/a
Elektor TV Games Computer Memory mapped Memory mapped 1515+ baud raw via CASIN 1515+ baud raw via CASOUT EOF No
PIPBUG 1 110 baud teletype via Sense 110 baud teletype via Flag 110 baud CUTS via Sense 110 baud CUTS via Flag AOF No
PIPBUG 2 110/300 baud teletype via Sense 110/300 baud teletype via Flag 110/300 baud CUTS via Sense 110/300 baud CUTS via Flag AOF? No?
HYBUG 300/600/1200 baud teletype? 300/600/1200 baud teletype? 300/600/1200 baud? 300/600/1200 baud? ? ?
BINBUG 3.6 300 baud teletype via Sense Memory mapped ? ? ? Yes, with ACOS
Signetics Instructor 50 Memory mapped ? ? baud via Sense ? baud via extended I/O port $F8 AOF No?
Central Data 2650 Parallel keyboard via Data port Memory mapped, 80*16 characters
Monochrome
300* baud CUTS via Sense
clear bit = 4 cycles of 1200Hz
set bit = 8 cycles of 2400Hz
300* baud CUTS via Flag
clear bit = 4 cycles of 1200Hz
set bit = 8 cycles of 2400Hz
AOF Yes
PHUNSY ? Memory mapped, 64*32 characters
8-level greyscale
? ? ? ?
Ravensburger Selbstbaucomputer Parallel keyboard via port $07 Ports $1B & $1C 110 baud CUTS? via Sense 110 baud CUTS? via Flag ? Yes

* The 4.73 MHz (approx.) version of the Central Data 2650 operates at 1200 instead of 300 baud.

Platform Drives Size Tracks Track size Sectors/track Sector size Sectors Capacity Format(s) Dir sectors DOS sectors Max files Controller RPM Speed
BINBUG 0+ 5.25" 40 (0..39) 2.5K 10 (1..10) 256 bytes 400 100K RAW 10 3 100 1 MHz FD1771 300 12.5K/sec
Central Data 2650 0-4 5.25" 35 (0..34) 2.25K 9 (1..9) 256 bytes 315 78.75K RAW 18 128 64 1 MHz FD1771 300 11.25K/sec
Signetics TWIN 2 8" 77 (0..76) 4K 32 (0..31) 128 bytes 308 308K IMG, TWIN 4 27 78 ? 360 24K/sec

Speed = bytes per sector * sectors per track * revolutions per second.
(Speed of reading/writing processed bytes, assuming an infinitely fast CPU.)

Data is stored on the bottom (ie. non-label) side of a single-sided disk (the read-write head of a single-sided drive is on the bottom). Viewing the disk from below (ie. viewing the data side), the disk spins clockwise (thus sectors are numbered anticlockwise).
The drive motor on 8" floppy drives runs on 230V AC and is always on. The drive is kept spinning at all times. The head is unloaded when idle, but the disk is always spinning within its sleeve. The drive motor on 5.25" floppy drives is turned on and off as required.

.RAW files are raw disk files of 100K (102,400 bytes) (BINBUG) or 78.75K (80,640 bytes) CD2650), lacking sector and block numbers.
.IMG files are raw disk files of 308K (315,392 bytes), lacking sector and block numbers.
.TWIN files are disk files of 320,320 bytes, the same as .IMG except that each 128-byte sector is prepended with the track and sector numbers (thus becoming 130 bytes per sector).

Printer EUY-10E023LE Centronics Model 306C
Condensed width 32 columns * 8 dots = 256 dots 132 columns
Normal width 32 columns * 8 dots = 256 dots 80 columns
Expanded width 16 columns * 16 dots = 256 dots ?
Speed 2 lines/sec (512 dots/sec) ?
Paper size (printable area) ? cm * 60 m 2.5..8" * 11"
Paper size (total) 6 cm * 60 m 4..9.5" * 11"
Horizontal characters per inch (condensed mode) ? 16.5
Horizontal characters per inch (normal mode) ? 10
Vertical characters per inch ? 6

BIOS/DOS command cross-reference:

CPU: TVGC PIPBUG 1 BINBUG 3.6 SI50 SDOS 3.0 Supervisor Selbst Ami/WinArcadia
See & alter IAR PC REG C PC J|JUMP
See & alter PSU REG S 7 S7 REG 7 SEt PSU I8 CMD A E|POKE PSU
See & alter PSL REG S 8 S8 REG 8 SEt PSL I7 CMD A E|POKE PSL
See & alter registers REG S 0..6 S0..S6 REG 0..6 SEt R0..R6 I0..I6 CMD A E|POKE R0..R6
Set slave CPU mode Ice
Memory: TVGC PIPBUG 1 BINBUG 3.6 SI50 SDOS 3.0 Supervisor PHUNSY Selbst MIKIT Ami/WinArcadia
Compare (verify) memory V COMP
Copy (move) memory MOVe M NXT COPY|MOVE
Dump memory to screen D address1 address2 Dump I D|PEEK
Fill memory Fill P FILL
Patch memory REG F Patch :
See & alter memory MEM A address A MEM Exam
WRite
A : NXT Read E|POKE
D|PEEK
Program control: TVGC PIPBUG 1 BINBUG 6/7 SI50 SDOS 3.0 CD2650 PHUNSY Selbst MIKIT Ami/WinArcadia
Abort program Abort
Cold start DOS K
Continue program Cont G|P
Execute program START G address G RUN Go E (supervisor)
EXEC (CD DOS)
G RUN
GOTO
PC
Go G|P
Generate an interrupt INT GI
Reset machine RST RST
MON
F5 key
Step instruction STEP S
Suspend program Suspend G|P
Warm start DOS W
Debugging: TVGC PIPBUG 1 BINBUG 3.6 SI50 SDOS 3.0 Supervisor PHUNSY Selbst MIKIT Ami/WinArcadia
Clear breakpoint BP C 1|2 C BKPT CLBp C BP1/2 CMD C BC
Load debugger DEBug
Relocate debug utility programs Upr
Set breakpoint BP B 1|2 address B BKPT BKpt B BP1/2 CMD B Halt BP
Set trace mode TRace T
Show status of debugger DStat V|VIEW CPU
BL, IL, WL
Show status of slave program STatus
Tapes: TVGC PIPBUG 1 BINBUG 3.6 SI50 Supervisor PHUNSY Selbst MIKIT
Adjust tape REG A
Issue MDCR command T
Load memory as AOF/EOF from tape RCAS L L RCAS L R CMD F Load
Run tape recorder R
Save (dump) memory as AOF/EOF to tape WCAS D address1 address2 D WCAS D W CMD D Store
Verify (check) tape V CMD E
Disks: SDOS 3.0 CD DOS Ami/WinArcadia
Copy disk DUP DISKCOPY
Format (initialize) disk FORMAT
List files on disk Ldir LIST DIR
List open files LOPEN
Raw read DISKRD
Raw write DISKWR
Relabel disk REName
Reset disk drives RESTORE
Set default drive DUNIT
Set system drive SYstem
Show free disk space Ldir FREE DIR
Show (inspect) raw sector(s) INSPECT
Verify (check) disk Verify
Files on disk: SDOS 3.0 CD DOS Ami/WinArcadia
Assemble source code ASM ASM
Compare files CMPf
Copy file(s) COPy
Delete file DELete DELETE DEL
Dump file (to screen) as hex and ASCII DFil
Edit file on disk EDIT
Load (read) AOF file from device Rhex
Load (read) IMAG file from disk LOAD
Load (read) & run IMAG file from disk RUN
Load (read) binary? file from disk READ
Load (read) MOD file from device LOad
Load (read) & run MOD file from device XEQ
Rename file REName RENAME
Print file without line numbers PRint
Print file with line numbers PRINTL
Reserve disk space for a new file ALLOC
Save (write) AOF file to device WHex
Save (write) binary? file to disk WRITE
Save (write) MOD file to device Module
Save (write) IMAG file to disk IMAGE
Set change code on file CCODE
Set inspection code on file ICODE
Truncate file DEALLOC
Channels: SDOS 3.0 CD DOS
Assign device to channel ASSign
Close channel/file CLose CLOSE
Inform OS of peripheral availability DEVice
Open file OPEN
PROMs: SDOS 3.0 MIKIT
Compare PROM against slave memory CProm
Compare SMS file against slave memory CSms
Punch memory as BPNF file to papertape Punch
Read/write/verify PROM PROm
Read PROM into slave memory RProm
Write slave memory to PROM WProm
Save (write) SMS file to device WSms
Command (script) files: SDOS 3.0
Comment *
Toggle termination condition Kill
Toggle echoing TYpe
Memory banks: PHUNSY
"Q" bank select/execute Q
"U" bank select/execute U
Show selected banks =
I/O ports: SDOS 3.0 Ami/WinArcadia
Read from I/O port REad READPORT
Write to I/O port WRite WRITEPORT
Miscellaneous: SDOS 3.0 CD DOS PHUNSY Ami/WinArcadia
Log in/on SIGNON
Set date DATE
Set default file type DTYPE
Set default codeword ENTER
Show date WHEN
Show error message S ERROR
Show OS ID X

Letters in lowercase are optional.

Timing table:

Area Arcadia (2622 USG) 2621 USG BINBUG (DG640) CD2650 PHUNSY AY-3-8500-1 AY-3-8550
Horizontal back porch (pre-colourburst) -17..-16/32..33 (2) -21..-19/28..30 (3) ? - 58..65 (8) ? ?
Horizontal back porch (colourburst) -15..-7/34..42 (9) -18..-10/31..39 (9) ? - 66..81 (16) ? ?
Horizontal back porch (post-colourburst) -6..-1/43..48 (6) -9..-1/40..48 (9) ? - 82..127 (46) ? ?
Horizontal back porch (total) -17..-1/32..48 (17) -21..-1/28..48 (21) 702?..767 (66?) 776..903 (128) 58..127 (70) 0..26 (27) 0..26 (27)
Main display area (horizontal) 0..177,-49..-40/49..226,0..9 (188) 0..177,-49..-44/49..226,0..5 (184) 0..575 (576) 0..639 (640) 128..511 (384) 27..99 (73) 27..99 (73)
Horizontal front porch -39..-35/10..14 (5) -43..-39/6..10 (5) 576..641? (66?) 640..711 (72) 0..25 (26) 100..115 (16) 100..115 (16)
Horizontal retrace -34..-18/15..31 (17) -38..-22/11..27 (17) 642?..701? (60?) 712..775 (64) 26..57 (32) 116..127 (12) 116..127 (12)
Total (horizontal) -49..177/0..226 (227) -49..177/0..226 (227) 0..767 (768) 0..903 (904) 0..511 (512) 0..127 (128) 0..127 (128)
Vertical back porch -14..-1 (14) -28..-1 (28) ~286.5?..312.5 (~26?) 228..263 (36) 273..312 (40) 0..41 (42) 0..43 (44)
Main display area (vertical) 0..241 (242) 0..268 (269) 0..255 (256) 0..191 (192) 0..255 (256) 42..233 (192) 44..275 (232)
Vertical front porch -20..-18 (3) -43..~-30.5 (~13.5) 256..281? (26?) 192..215 (24) 256..268 (13) 234..257 (24) 276..305 (30)
Vertical retrace -17..-15 (3) ~-30.5..-29 (~2.5) 282?..~286.5? (~4.5?) 216..227 (12) 269..272 (4) 258..261 (4) 306..311 (6)
Total (vertical) 0..261 (262) 0..311 (312) 0..311.5 (312.5) 0..263 (264) 0..312 (313) 0..261 (262) 0..311 (312)
Main display 188*242=45,496 188*269=50,572 576*256=147,456 640*192=122,880 384*256=98,304 73*192=14,016 73*232=16,936
Entire display 227*262=59,474 227*312=70,824 768*312.5=240,000 904*264=238,656 512*313=160,256 128*262=33,536 128*312=39,936
Lines per second (method A) 60*262=15,720 50*312=15,600 50*312.5=15,625 60*264=15,840 50*313=15,650 60*262=15,720 50*312=15,600
Lines per second (method C) ~60.18672*262=
~15,768.92064
~50.08041*312=
~15,625.08792
?*312.5=? ?*264=? ?*313=? ?*262=? ?*312=?
Line duration (µS) (method A) 1,000,000÷15,720=
~63.61323
1,000,000÷15,600=
~64.10256
? ? ? ? ?
Line duration (µS) (method C) 1,000,000÷~15,768.92064=
~63.41588
1,000,000÷~15,625.08792=
~63.99964
? ? ? ? ?
Pixel duration (nS) (method A) 16.666'÷59,474=~280.23450 20,000÷70,824=~282.39015 ? ? ? ? ?
Pixel duration (nS) (method C) 1÷3,579,545=~279.36511 1÷3,546,895=~281.93674 ? ? ? ? ?
Pixels per CPU cycle 4 4 12 12 8
CPU cycles per frame 59,474÷4=14,865.5 70,824÷4=17,706 240,000÷12=20,000 238,656÷12=19,888 160,256÷8=20,032 - -
Pixels per second (method A) 59,474*60=3,568,440 70,824*50=3,541,200 240,000*50=12,000,000 238,656*60=14,319,360 160,256*50=8,012,800 33,536*60=2,012,160 39,936*50=1,996,800
Pixels per second (method B) 227÷64=3,546,875 227÷64=3,546,875 768÷64=12,000,000 904÷64=14,125,000 512÷64=8,000,000 128÷64=2,000,000 128÷64=2,000,000
Pixels per second (method C) 3,579,545 (+/- 10) 3,546,895 (+/- 35) ? 14,192,640 ? ? ?
CPU speed (Hz) (method A) 3,568,440÷4=892,110 3,541,200÷4=885,300 12,000,000÷12=1,000,000 14,319,360÷12=1,193,280 8,012,800÷8=1,001,600 - -
CPU speed (Hz) (method B) 227÷4÷64=886,718.75 227÷4÷64=886,718.75 768÷12÷64=1,000,000 904÷12÷64=1,177,083' 512÷8÷64=1,000,000 - -
CPU speed (Hz) (method C) 3,579,545÷4=894,886.25 3,546,895÷4=886,723.75 ? 14,192,640÷12=1.18272 ? - -
Frames per second (method A) 60÷1.001=~59.94 (NTSC) 50 (PAL) 50 (PAL) 60÷1.001=~59.94 (NTSC) 50 (PAL) 60÷1.001=~59.94 (NTSC) 50 (PAL)
Frames per second (method B) 3,546,875
÷59,474=~59.63740
3,546,875
÷70,824=~50.08013
12,000,000
÷240,000=50
14,125,000
÷238,656=~59.18561
8,000,000
÷160,256=~49.92013
2,000,000
÷33,536=~59.63740
2,000,000
÷39,936=~50.08013
Frames per second (method C) 3,579,545
÷59,474=~60.18672
3,546,895
÷70,824=~50.08040
? 14,192,640
÷238,656=~59.46903
? ? ?
Frame duration (µS) (method A) 1,000,000÷60=
16,666.6'
1,000,000÷50=
20,000
? 1,000,000÷60=
16,666.6'
? ? ?
Frame duration (µS) (method C) 1,000,000÷~60.18672=
~16,614.96084
1,000,000÷~50.08040=
~19,967.88741
? 1,000,000÷~59.46903=
~16,815.47619
? ? ?

Astro Wars and Lazarian, although they use PAL USGs (2621), have NTSC master clocks (14,318,180 Hz ÷ 4 = 3,579,545 Hz and 14,318,000 Hz ÷ 4 = 3,579,500 Hz, respectively).
To calculate pixels per µsec: Divide width of screen (eg. 227) by duration of line (64 µsecs) = 3.546875 pixels per µsec.
To calculate µsecs per pixel: Divide duration of line (64 µsecs) by width of screen (eg. 227) = 0.281938 µsecs per pixel (datasheet says 282 nsecs).
Method A assumes exactly 50/60 frames per second, and calculates all timings relative to that. (60÷1.001 would be more accurate than 60 for colour NTSC.)
Method B assumes exactly 64 µsecs per rastline, and calculates all timings relative to that.
Method C uses the master clock frequency as documented in eg. service manual, and calculates all timings relative to that. This is the most accurate method.

Measured 2622 USG output from a real NTSC console indicates that a frame lasts for about 16,615.2 µS, giving a derived FPS of about 60.18585.

The USG generates a single sync pulse (lasting for 227*3=681 X-pixels for NTSC or 114+227+227+11=579 X-pixels for PAL), known as block sync, rather than a train of long and short pulses, known as commercial sync, which is/was typically used for TV broadcasts).

USG signals are:

Abbrev. Name Description
CSYNC Composite Sync high whenever VS equals HS (ie. whenever both are low, or both are high).
high during visible area and blanking
low during HS
low during VS
high during HS+VS
VRST Vertical Reset high from X,Y-pixel 10,1..9,20 (NTSC) or 6,1..5,43 (PAL) (ie. during vertical blank).
CBLNK Composite Blanking high whenever HRST or VRST (or both) is high.
? ? high whenever HRST or VRST (or both) is high, except during CBF.
CBF Colour Burst Flag high from X-pixel 34..42 (NTSC) or 31..39 (PAL) (ie. during colour burst).
HRST Horizontal ReSeT high from X-pixel 10..48 (NTSC) or 6..48 (PAL) (ie. during horizontal blank).
PCK horizontal Position ClocK high during the left half of each pixel, low during the right half.
OE Odd/Even line high during even-numbered rastlines (assuming X >= 23 (NTSC) or X >= 19 (PAL)).
toggles at X-pixel 23 (NTSC) or 19 (PAL) of each line (ie. midway through horizontal retrace).
HS Horizontal Sync high from X-pixel 15..31 (NTSC) or 11..27 (PAL) (ie. during horizontal retrace).
VS Vertical Sync high from X,Y-pixel 32,3..31,5 (NTSC) or 113,12..10,15 (PAL) (ie. during vertical retrace).

Standard TV broadcasts vs. USG output:

Standard 480i (NTSC) 240p (NTSC) 2622 USG 576i (PAL) 288p (PAL) 2621 USG
1st field visible lines 240 240 242 288 288 269
1st field blanking lines 22½ 22 20 24½ 24 43
2nd field visible lines 240 240 242 288 288 269
2nd field blanking lines 22½ 22 20 24½ 24 43
Lines per frame 525 524 524 625 624 624

2650 CPU

Addressing mode notation (for eg. LODx instruction):

Addressing Mode Signetics Format Signetics Example CALM Format CALM Example IEEE-694 Format IEEE-694 Example
Register LODZ reg LODZ r1 LOAD A,reg LOAD A,B LD .0,.reg LD .0.,1
Immediate LODI,reg imm LODI,r0 12 LOAD reg,#imm LOAD A,#12 LD .reg,#imm LD .0,#12
Relative direct LODR,reg rel LODR,r0 1234 LOAD reg,^rel LOAD A,^1234 LD .reg,$rel LD .0,$1234
Relative indirect LODR,reg *rel LODR,r0 *1234 LOAD reg,^@rel LOAD A,^@1234 LD .reg,$@rel LD .0,$@1234
Absolute direct LODA,reg abs LODA,r0 1234 LOAD reg,abs LOAD A,1234 LD .reg,/abs LD .0,/1234
Absolute indirect LODA,reg *abs LODA,r0 *1234 LOAD reg,@abs LOAD A,@1234 LD .reg,/@abs LD .0,/@1234
Indexed direct LODA,r0 abs,reg LODA,r0 1234,r1 LOAD A,(reg)+abs LOAD A,(B)+1234 LD .0,/abs(.reg) LD .0,/1234(.1)
Indexed indirect LODA,r0 *abs,reg LODA,r0 *1234,r1 LOAD A,(reg)+@abs LOAD A,(B)+@1234 LD .0,/@abs(.reg) LD .0,/@1234(.1)
Indexed direct with pre-increment LODA,r0 abs,reg+ LODA,r0 1234,r1+ LOAD A,(+reg)+abs LOAD A,(+B)+1234 LD .0,/abs(+.reg) LD .0,/1234(+.1)
Indexed indirect with pre-increment LODA,r0 *abs,reg+ LODA,r0 *1234,r1+ LOAD A,(+reg)+@abs LOAD A,(+B)+@1234 LD .0,/@abs(+.reg) LD .0,/@1234(+.1)
Indexed direct with pre-decrement LODA,r0 abs,reg- LODA,r0 1234,r1- LOAD A,(-reg)+abs LOAD A,(-B)+1234 LD .0,/abs(-.reg) LD .0,/1234(-.1)
Indexed indirect with pre-decrement LODA,r0 *abs,reg- LODA,r0 *1234,r1- LOAD A,(-reg)+@abs LOAD A,(-B)+@1234 LD .0,/@abs(-.reg) LD .0,/@1234(-.1)

Program Status Word (PSW) bits:

Register Bit(s) Readable/Writable Signetics CALM IEEE-694 Letter
2650/2650A 2650B Name Abbrev. Letter Name Abbrev. Letter
PSU 7 R/- Sense S S Input I I ?
PSU 6 R/W Flag F F Output O O ?
PSU 5 R/W Interrupt Inhibit II I Interrupt mask bit IOF F I
PSU 4 -/- R/W User Flag #1 UF1 1 User Flag #1 UF1 1 ?
PSU 3 -/- R/W User Flag #2 UF2 2 User Flag #2 UF2 2 ?
PSU 2..0 R/W Stack Pointer SP - Stack Pointer SP - ?
PSL 7..6 R/W Condition Code CC - ? ? - ?
PSL 5 R/W Inter-Digit Carry IDC D Half carry H H ?
PSL 4 R/W Register Select RS R BANK1 B B ?
PSL 3 R/W With Carry WC W WITHCARRY W W ?
PSL 2 R/W Overflow OVF O OVERFLOW V V V
PSL 1 R/W Compare COM M LOGICOMP L L ?
PSL 0 R/W Carry C C CARRY C C C

Directive cross-reference (not all supported by the emulator):

Signetics PB2 TS1 PRO TW1 TS2 TW2 CALM IEEE-694 Description
ACON address
ACON address(es)...
No Yes1 Yes1 Yes Yes Yes - - Insert the given address(es) into the object
- No No No No No No .ALIGN value - Align assembler program counter to the next multiple of value
- No No No No No No .APC value - Select one of the assembler program counters
ASCI string Yes No No No No No .ASCII string - Insert the ASCII text in the object
- No No No No No No .ASCIZ string - Insert the ASCII text in the object, with ASCII NUL code at the end
- No No No No No No .ASCIZE string - Insert the ASCII text in the object, with ASCII NUL code at the end, and add pad byte if needed for even alignment
CEJE rows No No No No No Yes - - Conditionally commence a new page in the listing
- No No No No No No .CHAP string - Add the specified text in the subtitle header
CSECT No No No No No Yes - - Identify object module
DATA byte(s)...
(DB byte(s)...)
No Yes Yes Yes Yes Yes .DATA.8 byte(s)...
.8 byte(s)...
DATA byte(s)...
DATAB byte(s)...
Insert the given byte(s) into the object
(DFLT 0|1|10|16) No No No No No No .BASE value BASE B|Q|D|H Set the default base
- No No No No No No .BLK.16 length - Add length words to the value of the assembler program counter
- No No No No No No .BLK.32 length - Add length longwords to the value of the assembler program counter
(DW word(s)...) No No No No No No .DATA.16 word(s)...
.16 word(s)...
DATAL word(s)... Insert the given word(s) into the object
- No No No No No No .DATA.32 longword(s)...
.32 longword(s)...
- Insert the given longword(s) into the object
EJE
(PAGE)
No Yes Yes Yes Yes Yes .PAGE PAGE Commence a new page in the listing
ELSE No No No Yes Yes Yes .ELSE - Assemble up to corresponding .ENDIF, if condition was false
END
END [address]
Yes2 Yes Yes Yes Yes Yes .END END End assembly (and optionally set program start address, for some assemblers)
ENDIF No No No Yes Yes Yes .ENDIF - End conditional assembly
- No No No No No No .ENDLIST - End conditional listing
- No No No No No No .ENDMACRO
.EXITMACRO
- End macro definition
ENDS No No No No Yes No - - End segment
- No No No No No No .ENDTEXT - End comment block
ENTRY symbol(s)... No No No No Yes Yes .EXPORT symbol(s)... - Define the exported symbols
symbol EQU value No Yes Yes Yes Yes Yes (symbol .EQU value)
symbol = value
symbol EQU value Define a symbol permanently
- No No No No No No .ERROR string - Generate an error message
- No No No No No No .EVEN - Align assembler program counter to the next even value
EXTRN symbol(s)... No No No No Yes Yes .IMPORT symbol(s)... - Define the imported symbols
- No No No No No No .FILL.8|16|32 length,value - Fill length bytes/words/longswords with value
IF condition No No No Yes Yes Yes .IF condition - Begin conditional assembly
(INCLUDE filename) No No No No No No .INS filename - Insert the mentioned source file
- No No No No No No .LAYOUT HEX|DEC|LENGTH rows|WIDTH columns|TAB columns|LEADING0 TRUE|FALSE|DEFFIRST|LSBFIRST|MSBFIRST - Define the general layout parameters for the listing
- No No No No No No .LAYOUTMACRO COMMENT|COMPRESS|ERROR|LIST|REPLACE [TRUE|FALSE] - Define the macro layout parameters for the listing
LIBR string No No Yes No No No - - Library directive (print message and wait for user keypress)
- No No No No No No .LIST condition - Begin conditional listing
- No No No No No No .LISTIF condition - Controls whether conditional assembly directives (.IF/.ELSE/.ENDIF) themselves appear in the listing
- No No No No No No .LOCALMACRO symbol(s)... - List of local symbols in a macro
- No No No No No No .MACRO name[,parameter(s)...] - Begin macro definition
- No No No No No No .ODD - Align assembler program counter to the next odd value
ORG address Yes Yes Yes Yes Yes Yes .LOC address ORG address Set current assembler program counter
PCH ON|OFF No Yes Yes Yes Yes Yes - - Resume or discontinue punching papertape
- No No No No No No .PROC filename - Insert the mentioned processor description (eg. .PROC S2650 )
- No No No No No No .PROCSET parameter - Enable a processor feature
- No No No No No No .PROCVAL parameter value - Set a named parameter with a specific value
PRT ON|OFF
PRT ON|OFF|GEN|NOGEN
No Yes3 Yes3 Yes3 Yes3 Yes - - Resume or discontinue printing
- No No No No No No .RANGE.8|16|32 min,max - Define the range of values permitted for .DATA, .FILL, etc.
- No No No No No No .REF filename - Insert the mentioned symbol table
REPRO No No No No No Yes - - Copy next line into object module and do not assemble that line
RES length
(DS length)
No Yes Yes Yes Yes Yes .BLK.8 length RES length Add length bytes to the value of the assembler program counter
SEG segment,relocation,mode No No No No Yes No - - Begin segment
symbol SET value No No No Yes Yes Yes - - Define a symbol temporarily
SPC rows No Yes Yes Yes Yes Yes - - Add blank lines (spacing)
(START address) No No No No No No .START address - Set program start address
- No No No No No No .STRING string - Insert the ASCII text in the object, with length (8 bits) at the beginning
- No No No No No No .SYSCALL symbol - Define a special instruction (system call)
- No No No No No No .TEXT - Begin comment block
TITL string No Yes Yes Yes Yes Yes .TITLE string TITLE string Start a new page with the specified title

1 Only one argument is allowed.
2 No arguments are allowed.
3 Only ON and OFF arguments are allowed.

Notes for CALM:
Extended .BLK notation is supported by the standard (though not by the emulator), eg. .BLK.8.16.32.16.8 10 will reserve 100 ((1+2+4+2+1)*10) bytes. And similarly for [.DATA].8|16|32 , eg. 8.8.16 "A","Z",$1234 .
.LAYOUT and .LAYOUTMACRO can take multiple arguments, eg. LAYOUT HEX,LENGTH 66 .

Assemblers are: PB2=PIPLA, TS1=Timeshare unrelocatable, PRO=Prometheus, TW1=TWIN unrelocatable, TS2=Timeshare relocatable, TW2=TWIN relocatable.
Directives in parentheses are unofficial (supported by the emulator but not part of the standard).

The emulator uses a slightly modified version of the CALM and IEEE-694 notations, to avoid clashes with other uses of these symbols, as follows. Differences are highlighted.

Signetics real Signetics in emu CALM real CALM in emu IEEE-964 real IEEE-964 in emu
I/O port $ &
Indirection * * @ * @ *
Immediate value # # # #
Relative address .+ ^ $ ^
Absolute address / /
Zero page address 0+ / ! &
Current address $ $ APC $ * $
Binary 'B' % 2' % B' %
Octal 'O' @ 8' @ Q' @
Decimal 'D' ! or 'D' 10' ! D' !
Hexadecimal 'H' $ or 'H' 16' $ H' $

Instruction cross-reference:

Hex Signetics CALM IEEE-694 Signetics pseudocode PSU PSL Note
Opcode Operands Opcode Real oprnds Emu oprnds Opcode Real oprnds Emu oprnds S F II SP CC IDC RS WC OVF COM C
00 LODZ r0 LOAD A,A MOV .0,.0 if (r0 & $80) CC = LT; elif (r0 == 0) CC = EQ; else CC = GT; - - - - W - - - - - - 1
01 LODZ r1 LOAD A,B MOV .0,.1 r0 = r1; - - - - W - R - - - - -
02 LODZ r2 LOAD A,C MOV .0,.2 r0 = r2; - - - - W - R - - - - -
03 LODZ r3 LOAD A,D MOV .0,.3 r0 = r3; - - - - W - R - - - - -
04 LODI,r0 imm LOAD A,#imm LD .0,#imm r0 = imm; - - - - W - - - - - - -
05 LODI,r1 imm LOAD B,#imm LD .1,#imm r1 = imm; - - - - W - R - - - - -
06 LODI,r2 imm LOAD C,#imm LD .2,#imm r2 = imm; - - - - W - R - - - - -
07 LODI,r3 imm LOAD D,#imm LD .3,#imm r3 = imm; - - - - W - R - - - - -
08 LODR,r0 rel LOAD A,.+rel A,^rel LD .0,$rel .0,^rel r0 = *rel; - - - - W - - - - - - -
09 LODR,r1 rel LOAD B,.+rel B,^rel LD .1,$rel .1,^rel r1 = *rel; - - - - W - R - - - - -
0A LODR,r2 rel LOAD C,.+rel C,^rel LD .2,$rel .2,^rel r2 = *rel; - - - - W - R - - - - -
0B LODR,r3 rel LOAD D,.+rel D,^rel LD .3,$rel .3,^rel r3 = *rel; - - - - W - R - - - - -
0C LODA,r0 abs LOAD A,abs LD .0,/abs r0 = *abs; - - - - W - - - - - - -
0D LODA,r1 abs LOAD B,abs LD .1,/abs r1 = *abs; - - - - W - R - - - - -
0E LODA,r2 abs LOAD C,abs LD .2,/abs r2 = *abs; - - - - W - R - - - - -
0F LODA,r3 abs LOAD D,abs LD .3,/abs r3 = *abs; - - - - W - R - - - - -
10 LDPL abs LOAD L,abs LD .L,/abs PSL = *abs; - - - - W W W W W W W 2
11 STPL abs LOAD abs,L ST .L,/abs *abs = PSL; - - - - R R R R R R R 2
12 SPSU LOAD A,U MOV .0,.U r0 = PSU; R R R R W - - - - - - -
13 SPSL LOAD A,L MOV .0,.L r0 = PSL; - - - - B R R R R R R -
14 RETC,eq RET,EQ RETEQ if (CC == EQ) return; - - - B R - - - - - - -
15 RETC,gt RET,GT RETGT if (CC == GT) return; - - - B R - - - - - - -
16 RETC,lt RET,LT RETLT if (CC == LT) return; - - - B R - - - - - - -
17 RETC,un
RET
RET RET return; - - - B - - - - - - - 3
18 BCTR,eq
BER
BOR
BZR
rel JUMP,eq .+rel ^rel BEQ $rel ^rel if (CC == EQ) goto rel; - - - - R - - - - - - 3
19 BCTR,gt
BHR
BPR
rel JUMP,gt .+rel ^rel BGT $rel ^rel if (CC == GT) goto rel; - - - - R - - - - - - 3
1A BCTR,lt
BLR
BMR
rel JUMP,lt .+rel ^rel BLT $rel ^rel if (CC == LT) goto rel; - - - - R - - - - - - 3
1B BCTR,un
BR
rel JUMP .+rel ^rel BR $rel ^rel goto rel; - - - - - - - - - - - 3
1C BCTA,eq
BEA
BOA
BZA
abs JUMP,eq abs BEQ /abs if (CC == EQ) goto abs; - - - - R - - - - - - 3
1D BCTA,gt
BHA
BPA
abs JUMP,gt abs BGT /abs if (CC == GT) goto abs; - - - - R - - - - - - 3
1E BCTA,lt
BLA
BMA
abs JUMP,lt abs BLT /abs if (CC == LT) goto abs; - - - - R - - - - - - 3
1F BCTA,un
BA
abs JUMP abs BR /abs goto abs; - - - - - - - - - - - 3
20 EORZ
EORZ
r0
r0
XOR
CLR
A,A
A
XOR
CLR
.0,.0
.0
r0 = 0;
r0 = 0;
- - - - W - - - - - - -
21 EORZ r1 XOR A,B XOR .0,.1 r0 ^= r1; - - - - W - R - - - - -
22 EORZ r2 XOR A,C XOR .0,.2 r0 ^= r2; - - - - W - R - - - - -
23 EORZ r3 XOR A,D XOR .0,.3 r0 ^= r3; - - - - W - R - - - - -
24 EORI,r0
EORI,r0
imm
$FF
XOR
NOT
A,#imm
A
XOR
NOT
.0,#imm
.0
r0 ^= imm;
r0 ^= $FF;
- - - - W - - - - - - -
25 EORI,r1
EORI,r1
imm
$FF
XOR
NOT
B,#imm
B
XOR
NOT
.1,#imm
.1
r1 ^= imm;
r1 ^= $FF;
- - - - W - R - - - - -
26 EORI,r2
EORI,r2
imm
$FF
XOR
NOT
C,#imm
C
XOR
NOT
.2,#imm
.2
r2 ^= imm;
r2 ^= $FF;
- - - - W - R - - - - -
27 EORI,r3
EORI,r3
imm
$FF
XOR
NOT
D,#imm
D
XOR
NOT
.3,#imm
.3
r3 ^= imm;
r3 ^= $FF;
- - - - W - R - - - - -
28 EORR,r0 rel XOR A,.+rel A,^rel XOR .0,$rel .0,^rel r0 ^= *rel; - - - - W - - - - - - -
29 EORR,r1 rel XOR B,.+rel B,^rel XOR .1,$rel .1,^rel r1 ^= *rel; - - - - W - R - - - - -
2A EORR,r2 rel XOR C,.+rel C,^rel XOR .2,$rel .2,^rel r2 ^= *rel; - - - - W - R - - - - -
2B EORR,r3 rel XOR D,.+rel D,^rel XOR .3,$rel .3,^rel r3 ^= *rel; - - - - W - R - - - - -
2C EORA,r0 abs XOR A,abs XOR .0,/abs r0 ^= *abs; - - - - W - - - - - - -
2D EORA,r1 abs XOR B,abs XOR .1,/abs r1 ^= *abs; - - - - W - R - - - - -
2E EORA,r2 abs XOR C,abs XOR .2,/abs r2 ^= *abs; - - - - W - R - - - - -
2F EORA,r3 abs XOR D,abs XOR .3,/abs r3 ^= *abs; - - - - W - R - - - - -
30 REDC,r0 LOAD A,$CTRL A,&CTRL IN .0,CTRL r0 = IOPORT(CTRL); - - - - W - - - - - - -
31 REDC,r1 LOAD B,$CTRL B,&CTRL IN .1,CTRL r1 = IOPORT(CTRL); - - - - W - R - - - - -
32 REDC,r2 LOAD C,$CTRL C,&CTRL IN .2,CTRL r2 = IOPORT(CTRL); - - - - W - R - - - - -
33 REDC,r3 LOAD D,$CTRL D,&CTRL IN .3,CTRL r3 = IOPORT(CTRL); - - - - W - R - - - - -
34 RETE,eq RETION,EQ RETIEQ if (CC == EQ) { PSU &= ~PSU_II; return; } - - W B R - - - - - - -
35 RETE,gt RETION,GT RETIGT if (CC == GT) { PSU &= ~PSU_II; return; } - - W B R - - - - - - -
36 RETE,lt RETION,LT RETILT if (CC == LT) { PSU &= ~PSU_II; return; } - - W B R - - - - - - -
37 RETE,un RETION RETI PSU &= ~PSU_II; return; - - W B - - - - - - - -
38 BSTR,eq rel CALL,EQ .+rel ^rel CALLEQ $rel ^rel if (CC == EQ) gosub rel; - - - B R - - - - - - -
39 BSTR,gt rel CALL,GT .+rel ^rel CALLGT $rel ^rel if (CC == GT) gosub rel; - - - B R - - - - - - -
3A BSTR,lt rel CALL,LT .+rel ^rel CALLLT $rel ^rel if (CC == LT) gosub rel; - - - B R - - - - - - -
3B BSTR,un
BSR
rel CALL .+rel ^rel CALL $rel ^rel gosub rel; - - - B - - - - - - - 3
3C BSTA,eq abs CALL,EQ abs CALLEQ /abs if (CC == EQ) gosub abs; - - - B R - - - - - - -
3D BSTA,gt abs CALL,GT abs CALLGT /abs if (CC == GT) gosub abs; - - - B R - - - - - - -
3E BSTA,lt abs CALL,LT abs CALLLT /abs if (CC == LT) gosub abs; - - - B R - - - - - - -
3F BSTA,un
BSA
abs CALL abs CALL /abs gosub abs; - - - B - - - - - - - 3
40 HALT WAIT HALT|WAIT for (;;); - - - - - - - - - - - 4
41 ANDZ r1 AND A,B AND .0,.1 r0 &= r1; - - - - W - R - - - - -
42 ANDZ r2 AND A,C AND .0,.2 r0 &= r2; - - - - W - R - - - - -
43 ANDZ r3 AND A,D AND .0,.3 r0 &= r3; - - - - W - R - - - - -
44 ANDI,r0 imm AND A,#imm AND .0,#imm r0 &= imm; - - - - W - - - - - - -
45 ANDI,r1 imm AND B,#imm AND .1,#imm r1 &= imm; - - - - W - R - - - - -
46 ANDI,r2 imm AND C,#imm AND .2,#imm r2 &= imm; - - - - W - R - - - - -
47 ANDI,r3 imm AND D,#imm AND .3,#imm r3 &= imm; - - - - W - R - - - - -
48 ANDR,r0 rel AND A,.+rel A,^rel AND .0,$rel .0,^rel r0 &= *rel; - - - - W - - - - - - -
49 ANDR,r1 rel AND B,.+rel B,^rel AND .1,$rel .1,^rel r1 &= *rel; - - - - W - R - - - - -
4A ANDR,r2 rel AND C,.+rel C,^rel AND .2,$rel .2,^rel r2 &= *rel; - - - - W - R - - - - -
4B ANDR,r3 rel AND D,.+rel D,^rel AND .3,$rel .3,^rel r3 &= *rel; - - - - W - R - - - - -
4C ANDA,r0 abs AND A,abs AND .0,/abs r0 &= *abs; - - - - W - - - - - - -
4D ANDA,r1 abs AND B,abs AND .1,/abs r1 &= *abs; - - - - W - R - - - - -
4E ANDA,r2 abs AND C,abs AND .2,/abs r2 &= *abs; - - - - W - R - - - - -
4F ANDA,r3 abs AND D,abs AND .3,/abs r3 &= *abs; - - - - W - R - - - - -
50 RRR,r0 RR|RRC|SR A ROR|RORC|SHR .0 r0 >>= 1; - - - - W W - R W - B 4
51 RRR,r1 RR|RRC|SR B ROR|RORC|SHR .1 r1 >>= 1; - - - - W W R R W - B 4
52 RRR,r2 RR|RRC|SR C ROR|RORC|SHR .2 r2 >>= 1; - - - - W W R R W - B 4
53 RRR,r3 RR|RRC|SR D ROR|RORC|SHR .3 r3 >>= 1; - - - - W W R R W - B 4
54 REDE,r0 port LOAD A,$port A,&port IN .0,port r0 = IOPORT(port); - - - - W - - - - - - -
55 REDE,r1 port LOAD B,$port B,&port IN .1,port r1 = IOPORT(port); - - - - W - R - - - - -
56 REDE,r2 port LOAD C,$port C,&port IN .2,port r2 = IOPORT(port); - - - - W - R - - - - -
57 REDE,r3 port LOAD D,$port D,&port IN .3,port r3 = IOPORT(port); - - - - W - R - - - - -
58 BRNR,r0 rel JUMP,ANE .+rel ^rel BNZ .0,$rel .0,^rel if (r0 != 0) goto rel; - - - - - - - - - - - -
59 BRNR,r1 rel JUMP,BNE .+rel ^rel BNZ .1,$rel .1,^rel if (r1 != 0) goto rel; - - - - - - R - - - - -
5A BRNR,r2 rel JUMP,CNE .+rel ^rel BNZ .2,$rel .2,^rel if (r2 != 0) goto rel; - - - - - - R - - - - -
5B BRNR,r3 rel JUMP,DNE .+rel ^rel BNZ .3,$rel .3,^rel if (r3 != 0) goto rel; - - - - - - R - - - - -
5C BRNA,r0 abs JUMP,ANE abs BNZ .0,/abs if (r0 != 0) goto abs; - - - - - - - - - - - -
5D BRNA,r1 abs JUMP,BNE abs BNZ .1,/abs if (r1 != 0) goto abs; - - - - - - R - - - - -
5E BRNA,r2 abs JUMP,CNE abs BNZ .2,/abs if (r2 != 0) goto abs; - - - - - - R - - - - -
5F BRNA,r3 abs JUMP,DNE abs BNZ .3,/abs if (r3 != 0) goto abs; - - - - - - R - - - - -
60 IORZ r0 OR A,A OR .0,.0 if (r0 & 80) CC = LT; elif (r0 == 0) CC = EQ; else CC = GT; - - - - W - - - - - - -
61 IORZ r1 OR A,B OR .0,.1 r0 |= r1; - - - - W - R - - - - -
62 IORZ r2 OR A,C OR .0,.2 r0 |= r2; - - - - W - R - - - - -
63 IORZ r3 OR A,D OR .0,.3 r0 |= r3; - - - - W - R - - - - -
64 IORI,r0 imm OR A,#imm OR .0,#imm r0 |= imm; - - - - W - - - - - - -
65 IORI,r1 imm OR B,#imm OR .1,#imm r1 |= imm; - - - - W - R - - - - -
66 IORI,r2 imm OR C,#imm OR .2,#imm r2 |= imm; - - - - W - R - - - - -
67 IORI,r3 imm OR D,#imm OR .3,#imm r3 |= imm; - - - - W - R - - - - -
68 IORR,r0 rel OR A,.+rel A,^rel OR .0,$rel .0,^rel r0 |= *rel; - - - - W - - - - - - -
69 IORR,r1 rel OR B,.+rel B,^rel OR .1,$rel .1,^rel r1 |= *rel; - - - - W - R - - - - -
6A IORR,r2 rel OR C,.+rel C,^rel OR .2,$rel .2,^rel r2 |= *rel; - - - - W - R - - - - -
6B IORR,r3 rel OR D,.+rel D,^rel OR .3,$rel .3,^rel r3 |= *rel; - - - - W - R - - - - -
6C IORA,r0 abs OR A,abs OR .0,/abs r0 |= *abs; - - - - W - - - - - - -
6D IORA,r1 abs OR B,abs OR .1,/abs r1 |= *abs; - - - - W - R - - - - -
6E IORA,r2 abs OR C,abs OR .2,/abs r2 |= *abs; - - - - W - R - - - - -
6F IORA,r3 abs OR D,abs OR .3,/abs r3 |= *abs; - - - - W - R - - - - -
70 REDD,r0 LOAD A,$DATA A,&DATA IN .0,DATA r0 = IOPORT(DATA); - - - - W - - - - - - -
71 REDD,r1 LOAD B,$DATA B,&DATA IN .1,DATA r1 = IOPORT(DATA); - - - - W - R - - - - -
72 REDD,r2 LOAD C,$DATA C,&DATA IN .2,DATA r2 = IOPORT(DATA); - - - - W - R - - - - -
73 REDD,r3 LOAD D,$DATA D,&DATA IN .3,DATA r3 = IOPORT(DATA); - - - - W - R - - - - -
74 CPSU
CPSU
CPSU
CPSU
CPSU
CPSU
imm
$80
$40
$20
$20
$07
BIC
CLR
CLR
ION
CLR
CLR
U,#imm
INPUT
OUTPUT
 
IOF
STACK
AND
AND
AND
EI
EI
AND
.U,#~imm
.U,#~$80
.U,#~$40
 
 
.U,#~$07
PSU &= ~(imm & %01111111);
;
PSU &= ~PSU_F;
PSU &= ~PSU_II;
PSU &= ~PSU_II;
PSU &= ~PSU_SP;
- W W W - - - - - - - 5
75 CPSL
CPSL
CPSL
CPSL
CPSL
CPSL
CPSL
CPSL
CPSL
imm
$20
$10
$08
$04
$04
$02
$01
$01
BIC
CLR
CLR
CLR
CLRV
CLR
CLR
CLRC
CLR
L,#imm
HALFCARRY
BANK|BANK1
WITHCARRY
 
OVERFLOW
LOGICOMP
 
CARRY
AND
AND
AND
AND
CLRV
CLRV
AND
CLRC
CLRC
.L,#~imm
.L,#~$20
.L,#~$10
.L,#~$08
 
 
.L,#~$02
 
 
PSL &= ~imm;
PSL &= ~PSL_IDC;
PSL &= ~PSL_RS;
PSL &= ~PSL_WC;
PSL &= ~PSL_V;
PSL &= ~PSL_V;
PSL &= ~PSL_COM;
PSL &= ~PSL_C;
PSL &= ~PSL_C;
- - - - W W W W W W W -
76 PPSU
PPSU
PPSU
PPSU
PPSU
imm
$80
$40
$20
$20
OR
SET
SET
IOF
SET
U,#imm
INPUT
OUTPUT
 
IOF
OR
OR
OR
DI
DI
.U,#imm
.U,#$80
.U,#$40
 
 
PSU |= imm & %01111111;
;
PSU |= PSU_F;
PSU |= PSU_II;
PSU |= PSU_II;
- W W W - - - - - - - 5
77 PPSL
PPSL
PPSL
PPSL
PPSL
PPSL
PPSL
PPSL
PPSL
imm
$20
$10
$08
$04
$04
$02
$01
$01
OR
SET
SET
SET
SETV
SET
SET
SETC
SET
L,#imm
HALFCARRY
BANK|BANK1
WITHCARRY
 
OVERFLOW
LOGICOMP
 
CARRY
OR
OR
OR
OR
SETV
SETV
OR
SETC
SETC
.L,#imm
.L,#$20
.L,#$10
.L,#$08
 
 
.L,#$02
 
 
PSL |= imm;
PSL |= PSL_IDC;
PSL |= PSL_RS;
PSL |= PSL_WC;
PSL |= PSL_V;
PSL |= PSL_V;
PSL |= PSL_COM;
PSL |= PSL_C;
PSL |= PSL_C;
- - - - W W W W W W W -
78 BSNR,r0 rel CALL,ANE .+rel ^rel CALLNZ .0,$rel .0,^rel if (r0 != 0) gosub rel; - - - B - - - - - - - -
79 BSNR,r1 rel CALL,BNE .+rel ^rel CALLNZ .1,$rel .1,^rel if (r1 != 0) gosub rel; - - - B - - R - - - - -
7A BSNR,r2 rel CALL,CNE .+rel ^rel CALLNZ .2,$rel .2,^rel if (r2 != 0) gosub rel; - - - B - - R - - - - -
7B BSNR,r3 rel CALL,DNE .+rel ^rel CALLNZ .3,$rel .3,^rel if (r3 != 0) gosub rel; - - - B - - R - - - - -
7C BSNA,r0 abs CALL,ANE abs CALLNZ .0,/abs if (r0 != 0) gosub abs; - - - B - - - - - - - -
7D BSNA,r1 abs CALL,BNE abs CALLNZ .1,/abs if (r1 != 0) gosub abs; - - - B - - R - - - - -
7E BSNA,r2 abs CALL,CNE abs CALLNZ .2,/abs if (r2 != 0) gosub abs; - - - B - - R - - - - -
7F BSNA,r3 abs CALL,DNE abs CALLNZ .3,/abs if (r3 != 0) gosub abs; - - - B - - R - - - - -
80 ADDZ r0 ADD|ADDC A,A ADD|ADDC .0,.0 r0 += r0; - - - - W W - R W - B 4
81 ADDZ r1 ADD|ADDC A,B ADD|ADDC .0,.1 r0 += r1; - - - - W W R R W - B 4
82 ADDZ r2 ADD|ADDC A,C ADD|ADDC .0,.2 r0 += r2; - - - - W W R R W - B 4
83 ADDZ r3 ADD|ADDC A,D ADD|ADDC .0,.3 r0 += r3; - - - - W W R R W - B 4
84 ADDI,r0 imm ADD|ADDC A,#imm ADD|ADDC .0,#imm r0 += imm; - - - - W W - R W - B 4
85 ADDI,r1 imm ADD|ADDC B,#imm ADD|ADDC .1,#imm r1 += imm; - - - - W W R R W - B 4
86 ADDI,r2 imm ADD|ADDC C,#imm ADD|ADDC .2,#imm r2 += imm; - - - - W W R R W - B 4
87 ADDI,r3 imm ADD|ADDC D,#imm ADD|ADDC .3,#imm r3 += imm; - - - - W W R R W - B 4
88 ADDR,r0 rel ADD|ADDC A,.+rel A,^rel ADD|ADDC .0,$rel .0,^rel r0 += *rel; - - - - W W - R W - B 4
89 ADDR,r1 rel ADD|ADDC B,.+rel B,^rel ADD|ADDC .1,$rel .1,^rel r1 += *rel; - - - - W W R R W - B 4
8A ADDR,r2 rel ADD|ADDC C,.+rel C,^rel ADD|ADDC .2,$rel .2,^rel r2 += *rel; - - - - W W R R W - B 4
8B ADDR,r3 rel ADD|ADDC D,.+rel D,^rel ADD|ADDC .3,$rel .3,^rel r3 += *rel; - - - - W W R R W - B 4
8C ADDA,r0 abs ADD|ADDC A,abs ADD|ADDC .0,/abs r0 += *abs; - - - - W W - R W - B 4
8D ADDA,r1 abs ADD|ADDC B,abs ADD|ADDC .1,/abs r1 += *abs; - - - - W W R R W - B 4
8E ADDA,r2 abs ADD|ADDC C,abs ADD|ADDC .2,/abs r2 += *abs; - - - - W W R R W - B 4
8F ADDA,r3 abs ADD|ADDC D,abs ADD|ADDC .3,/abs r3 += *abs; - - - - W W R R W - B 4
90 -
91 -
92 LPSU LOAD U,A MOV .U,.0 PSU = (PSU & %10000000) | (r0 & %01111111); - W W W - - - - - - - 5
93 LPSL LOAD L,A MOV .L,.0 PSL = r0; - - - - W W W W W W W -
94 DAR,r0 DA A ADJ .0 r0 = DAR(r0); - - - - W R - - - - R -
95 DAR,r1 DA B ADJ .1 r1 = DAR(r1); - - - - W R R - - - R -
96 DAR,r2 DA C ADJ .2 r2 = DAR(r2); - - - - W R R - - - R -
97 DAR,r3 DA D ADJ .3 r3 = DAR(r3); - - - - W R R - - - R -
98 BCFR,eq
BNER
BNZR
rel JUMP,NE .+rel ^rel BNE $rel ^rel if (CC != EQ) goto rel; - - - - R - - - - - - 3
99 BCFR,gt
BNHR
BNPR
rel JUMP,LE .+rel ^rel BLE $rel ^rel if (CC != GT) goto rel; - - - - R - - - - - - 3
9A BCFR,lt
BNLR
BNMR
rel JUMP,GE .+rel ^rel BGE $rel ^rel if (CC != LT) goto rel; - - - - R - - - - - - 3
9B ZBRR zero JUMP 0+zero /zero BR !zero &zero goto zero; - - - - - - - - - - - -
9C BCFA,eq
BNEA
BNZA
abs JUMP,NE abs BNE /abs if (CC != EQ) goto abs; - - - - R - - - - - - 3
9D BCFA,gt
BNHA
BNPA
abs JUMP,LE abs BLE /abs if (CC != GT) goto abs; - - - - R - - - - - - 3
9E BCFA,lt
BNLA
BNMA
abs JUMP,GE abs BGE /abs if (CC != LT) goto abs; - - - - R - - - - - - 3
9F BXA,r3 abs JUMP (D)+abs BR /abs(.3) goto abs + r3; - - - - - - R - - - - -
A0 SUBZ r0 SUB|SUBB A,A SUB|SUBC .0,.0 r0 -= r0; - - - - W W - R W - B 4
A1 SUBZ r1 SUB|SUBB A,B SUB|SUBC .0,.1 r0 -= r1; - - - - W W R R W - B 4
A2 SUBZ r2 SUB|SUBB A,C SUB|SUBC .0,.2 r0 -= r2; - - - - W W R R W - B 4
A3 SUBZ r3 SUB|SUBB A,D SUB|SUBC .0,.3 r0 -= r3; - - - - W W R R W - B 4
A4 SUBI,r0 imm SUB|SUBB A,#imm SUB|SUBC .0,#imm r0 -= imm; - - - - W W - R W - B 4
A5 SUBI,r1 imm SUB|SUBB B,#imm SUB|SUBC .1,#imm r1 -= imm; - - - - W W R R W - B 4
A6 SUBI,r2 imm SUB|SUBB C,#imm SUB|SUBC .2,#imm r2 -= imm; - - - - W W R R W - B 4
A7 SUBI,r3 imm SUB|SUBB D,#imm SUB|SUBC .3,#imm r3 -= imm; - - - - W W R R W - B 4
A8 SUBR,r0 rel SUB|SUBB A,.+rel A,^rel SUB|SUBC .0,$rel .0,^rel r0 -= *rel; - - - - W W - R W - B 4
A9 SUBR,r1 rel SUB|SUBB B,.+rel B,^rel SUB|SUBC .1,$rel .1,^rel r1 -= *rel; - - - - W W R R W - B 4
AA SUBR,r2 rel SUB|SUBB C,.+rel C,^rel SUB|SUBC .2,$rel .2,^rel r2 -= *rel; - - - - W W R R W - B 4
AB SUBR,r3 rel SUB|SUBB D,.+rel D,^rel SUB|SUBC .3,$rel .3,^rel r3 -= *rel; - - - - W W R R W - B 4
AC SUBA,r0 abs SUB|SUBB A,abs SUB|SUBC .0,/abs r0 -= *abs; - - - - W W - R W - B 4
AD SUBA,r1 abs SUB|SUBB B,abs SUB|SUBC .1,/abs r1 -= *abs; - - - - W W R R W - B 4
AE SUBA,r2 abs SUB|SUBB C,abs SUB|SUBC .2,/abs r2 -= *abs; - - - - W W R R W - B 4
AF SUBA,r3 abs SUB|SUBB D,abs SUB|SUBC .3,/abs r3 -= *abs; - - - - W W R R W - B 4
B0 WRTC,r0 LOAD $CTRL,A &CTRL,A OUT .0,CTRL IOPORT(CTRL) = r0; - - - - - - - - - - - -
B1 WRTC,r1 LOAD $CTRL,B &CTRL,B OUT .1,CTRL IOPORT(CTRL) = r1; - - - - - - R - - - - -
B2 WRTC,r2 LOAD $CTRL,C &CTRL,C OUT .2,CTRL IOPORT(CTRL) = r2; - - - - - - R - - - - -
B3 WRTC,r3 LOAD $CTRL,D &CTRL,D OUT .3,CTRL IOPORT(CTRL) = r3; - - - - - - R - - - - -
B4 TPSU
TPSU
TPSU
TPSU
imm
$80
$40
$20
TEST
TEST
TEST
TEST
U,#imm
INPUT
OUTPUT
IOF
TEST
TEST
TEST
TEST
.U,#imm
.U,#$80
.U,#$40
.U,#$20
CC = (PSU & imm == imm) ? EQ : LT;
CC = (PSU & PSU_S) ? EQ : LT;
CC = (PSU & PSU_F) ? EQ : LT;
CC = (PSU & PSU_II) ? EQ : LT;
R R R R W - - - - - - -
B5 TPSL
TPSL
TPSL
TPSL
TPSL
TPSL
TPSL
imm
$20
$10
$08
$04
$02
$01
TEST
TEST
TEST
TEST
TEST
TEST
TEST
L,#imm
HALFCARRY
BANK|BANK1
WITHCARRY
OVERFLOW
LOGICOMP
CARRY
TEST
TEST
TEST
TEST
TEST
TEST
TEST
.L,#imm
.L,#$20
.L,#$10
.L,#$08
.L,#$04
.L,#$02
.L,#$01
CC = (PSL & imm == imm) ? EQ : LT;
CC = (PSL & PSL_IDC) ? EQ : LT;
CC = (PSL & PSL_RS) ? EQ : LT;
CC = (PSL & PSL_WC) ? EQ : LT;
CC = (PSL & PSL_OVF) ? EQ : LT;
CC = (PSL & PSL_COM) ? EQ : LT;
CC = (PSL & PSL_C) ? EQ : LT;
- - - - B R R R R R R -
B6 -
B7 -
B8 BSFR,eq rel CALL,NE .+rel ^rel CALLNE $rel ^rel if (CC != EQ) gosub rel; - - - B R - - - - - - -
B9 BSFR,gt rel CALL,LE .+rel ^rel CALLLE $rel ^rel if (CC != GT) gosub rel; - - - B R - - - - - - -
BA BSFR,lt rel CALL,GE .+rel ^rel CALLGE $rel ^rel if (CC != LT) gosub rel; - - - B R - - - - - - -
BB ZBSR zero CALL .0+zero /zero CALL !zero &zero gosub zero; - - - B - - - - - - - -
BC BSFA,eq abs CALL,NE abs CALLNE /abs if (CC != EQ) gosub abs; - - - B R - - - - - - -
BD BSFA,gt abs CALL,LE abs CALLLE /abs if (CC != GT) gosub abs; - - - B R - - - - - - -
BE BSFA,lt abs CALL,GE abs CALLGE /abs if (CC != LT) gosub abs; - - - B R - - - - - - -
BF BSXA,r3 abs CALL (D)+abs CALL /abs(.3) gosub abs + r3; - - - B - - R - - - - -
C0 NOP NOP NOP ; - - - - - - - - - - - -
C1 STRZ r1 LOAD B,A MOV .1,.0 r1 = r0; - - - - W - R - - - - -
C2 STRZ r2 LOAD C,A MOV .2,.0 r2 = r0; - - - - W - R - - - - -
C3 STRZ r3 LOAD D,A MOV .3,.0 r3 = r0; - - - - W - R - - - - -
C4 -
C5 -
C6 -
C7 -
C8 STRR,r0 rel LOAD .+rel,A ^rel,A ST .0,$rel .0,^rel *rel = r0; - - - - W - - - - - - -
C9 STRR,r1 rel LOAD .+rel,B ^rel,B ST .1,$rel .1,^rel *rel = r1; - - - - W - R - - - - -
CA STRR,r2 rel LOAD .+rel,C ^rel,C ST .2,$rel .2,^rel *rel = r2; - - - - W - R - - - - -
CB STRR,r3 rel LOAD .+rel,D ^rel,D ST .3,$rel .3,^rel *rel = r3; - - - - W - R - - - - -
CC STRA,r0 abs LOAD abs,A ST .0,/abs *abs = r0; - - - - W - - - - - - -
CD STRA,r1 abs LOAD abs,B ST .1,/abs *abs = r1; - - - - W - R - - - - -
CE STRA,r2 abs LOAD abs,C ST .2,/abs *abs = r2; - - - - W - R - - - - -
CF STRA,r3 abs LOAD abs,D ST .3,/abs *abs = r3; - - - - W - R - - - - -
D0 RRL,r0 RL|RLC|SL|ASL A ROL|ROLC|SHL|SHLA .0 r0 <<= 1; - - - - W W - R W - B 4
D1 RRL,r1 RL|RLC|SL|ASL B ROL|ROLC|SHL|SHLA .1 r1 <<= 1; - - - - W W R R W - B 4
D2 RRL,r2 RL|RLC|SL|ASL C ROL|ROLC|SHL|SHLA .2 r2 <<= 1; - - - - W W R R W - B 4
D3 RRL,r3 RL|RLC|SL|ASL D ROL|ROLC|SHL|SHLA .3 r3 <<= 1; - - - - W W R R W - B 4
D4 WRTE,r0 port LOAD $port,A &port,A OUT .0,port IOPORT(port) = r0; - - - - - - - - - - - -
D5 WRTE,r1 port LOAD $port,B &port,B OUT .1,port IOPORT(port) = r1; - - - - - - R - - - - -
D6 WRTE,r2 port LOAD $port,C &port,C OUT .2,port IOPORT(port) = r2; - - - - - - R - - - - -
D7 WRTE,r3 port LOAD $port,D &port,D OUT .3,port IOPORT(port) = r3; - - - - - - R - - - - -
D8 BIRR,r0
BIRR,r0
rel
$+2
INCJ,NE
INC
A,.+rel
A
A,^rel
A
IBNZ
INC
.0,$rel
.0
.0,^rel
.0
if (++r0 != 0) goto rel;
r0++;
- - - - - - - - - - - 6
D9 BIRR,r1
BIRR,r1
rel
$+2
INCJ,NE
INC
B,.+rel
B
B,^rel
B
IBNZ
INC
.1,$rel
.1
.1,^rel
.1
if (++r1 != 0) goto rel;
r1++;
- - - - - - R - - - - 6
DA BIRR,r2
BIRR,r2
rel
$+2
INCJ,NE
INC
C,.+rel
C
C,^rel
C
IBNZ
INC
.2,$rel
.2
.2,^rel
.2
if (++r2 != 0) goto rel;
r2++;
- - - - - - R - - - - 6
DB BIRR,r3
BIRR,r3
rel
$+2
INCJ,NE
INC
D,.+rel
D
D,^rel
D
IBNZ
INC
.3,$rel
.3
.3,^rel
.3
if (++r3 != 0) goto rel;
r3++;
- - - - - - R - - - - 6
DC BIRA,r0
BIRA,r0
abs
$+2
INCJ,NE
INC
A,abs
A
IBNZ
INC
.0,/abs
.0
if (++r0 != 0) goto abs;
r0++;
- - - - - - - - - - - 6
DD BIRA,r1
BIRA,r1
abs
$+2
INCJ,NE
INC
B,abs
B
IBNZ
INC
.1,/abs
.1
if (++r1 != 0) goto abs;
r1++;
- - - - - - R - - - - 6
DE BIRA,r2
BIRA,r2
abs
$+2
INCJ,NE
INC
C,abs
C
IBNZ
INC
.2,/abs
.2
if (++r2 != 0) goto abs;
r2++;
- - - - - - R - - - - 6
DF BIRA,r3
BIRA,r3
abs
$+2
INCJ,NE
INC
D,abs
D
IBNZ
INC
.3,/abs
.3
if (++r3 != 0) goto abs;
r3++;
- - - - - - R - - - - 6
E0 COMZ r0 COMP A,A CMP .0,.0 CC = EQ; - - - - W - - - - R - -
E1 COMZ r1 COMP A,B CMP .0,.1 if (r0 > r1) CC = GT; elif (r0 < r1) CC = LT; else CC = EQ; - - - - W - R - - R - -
E2 COMZ r2 COMP A,C CMP .0,.2 if (r0 > r2) CC = GT; elif (r0 < r2) CC = LT; else CC = EQ; - - - - W - R - - R - -
E3 COMZ r3 COMP A,D CMP .0,.3 if (r0 > r3) CC = GT; elif (r0 < r3) CC = LT; else CC = EQ; - - - - W - R - - R - -
E4 COMI,r0 imm COMP A,#imm CMP .0,#imm if (r0 > imm) CC = GT; elif (r0 < imm) CC = LT; else CC = EQ; - - - - W - - - - R - -
E5 COMI,r1 imm COMP B,#imm CMP .1,#imm if (r1 > imm) CC = GT; elif (r1 < imm) CC = LT; else CC = EQ; - - - - W - R - - R - -
E6 COMI,r2 imm COMP C,#imm CMP .2,#imm if (r2 > imm) CC = GT; elif (r2 < imm) CC = LT; else CC = EQ; - - - - W - R - - R - -
E7 COMI,r3 imm COMP D,#imm CMP .3,#imm if (r3 > imm) CC = GT; elif (r3 < imm) CC = LT; else CC = EQ; - - - - W - R - - R - -
E8 COMR,r0 rel COMP A,.+rel A,^rel CMP .0,$rel .0,^rel if (r0 > *rel) CC = GT; elif (r0 < *rel) CC = LT; else CC = EQ; - - - - W - - - - R - -
E9 COMR,r1 rel COMP B,.+rel B,^rel CMP .1,$rel .1,^rel if (r1 > *rel) CC = GT; elif (r1 < *rel) CC = LT; else CC = EQ; - - - - W - R - - R - -
EA COMR,r2 rel COMP C,.+rel C,^rel CMP .2,$rel .2,^rel if (r2 > *rel) CC = GT; elif (r2 < *rel) CC = LT; else CC = EQ; - - - - W - R - - R - -
EB COMR,r3 rel COMP D,.+rel D,^rel CMP .3,$rel .3,^rel if (r3 > *rel) CC = GT; elif (r3 < *rel) CC = LT; else CC = EQ; - - - - W - R - - R - -
EC COMA,r0 abs COMP A,abs CMP .0,/abs if (r0 > *abs) CC = GT; elif (r0 < *abs) CC = LT; else CC = EQ; - - - - W - - - - R - -
ED COMA,r1 abs COMP B,abs CMP .1,/abs if (r1 > *abs) CC = GT; elif (r1 < *abs) CC = LT; else CC = EQ; - - - - W - R - - R - -
EE COMA,r2 abs COMP C,abs CMP .2,/abs if (r2 > *abs) CC = GT; elif (r2 < *abs) CC = LT; else CC = EQ; - - - - W - R - - R - -
EF COMA,r3 abs COMP D,abs CMP .3,/abs if (r3 > *abs) CC = GT; elif (r3 < *abs) CC = LT; else CC = EQ; - - - - W - R - - R - -
F0 WRTD,r0 LOAD $DATA,A &DATA,A OUT .0,DATA IOPORT(DATA) = r0; - - - - - - - - - - - -
F1 WRTD,r1 LOAD $DATA,B &DATA,B OUT .1,DATA IOPORT(DATA) = r1; - - - - - - R - - - - -
F2 WRTD,r2 LOAD $DATA,C &DATA,C OUT .2,DATA IOPORT(DATA) = r2; - - - - - - R - - - - -
F3 WRTD,r3 LOAD $DATA,D &DATA,D OUT .3,DATA IOPORT(DATA) = r3; - - - - - - R - - - - -
F4 TMI,r0 imm TEST A,#imm TEST .0,#imm CC = (r0 & imm == imm) ? EQ : LT; - - - - W - - - - - - -
F5 TMI,r1 imm TEST B,#imm TEST .1,#imm CC = (r1 & imm == imm) ? EQ : LT; - - - - W - R - - - - -
F6 TMI,r2 imm TEST C,#imm TEST .2,#imm CC = (r2 & imm == imm) ? EQ : LT; - - - - W - R - - - - -
F7 TMI,r3 imm TEST D,#imm TEST .3,#imm CC = (r3 & imm == imm) ? EQ : LT; - - - - W - R - - - - -
F8 BDRR,r0
BDRR,r0
rel
$+2
DECJ,NE
DEC
A,.+rel
A
A,^rel
A
DBNZ
DEC
.0,$rel
.0
.0,^rel
.0
if (--r0 != 0) goto rel;
r0--;
- - - - - - - - - - - 6
F9 BDRR,r1
BDRR,r1
rel
$+2
DECJ,NE
DEC
B,.+rel
B
B,^rel
B
DBNZ
DEC
.1,$rel
.1
.1,^rel
.1
if (--r1 != 0) goto rel;
r1--;
- - - - - - R - - - - 6
FA BDRR,r2
BDRR,r2
rel
$+2
DECJ,NE
DEC
C,.+rel
C
C,^rel
C
DBNZ
DEC
.2,$rel
.2
.2,^rel
.2
if (--r2 != 0) goto rel;
r2--;
- - - - - - R - - - - 6
FB BDRR,r3
BDRR,r3
rel
$+2
DECJ,NE
DEC
D,.+rel
D
D,^rel
D
DBNZ
DEC
.3,$rel
.3
.3,^rel
.3
if (--r3 != 0) goto rel;
r3--;
- - - - - - R - - - - 6
FC BDRA,r0
BDRA,r0
abs
$+2
DECJ,NE
DEC
A,abs
A
DBNZ
DEC
.0,/abs
.0
if (--r0 != 0) goto abs;
r0--;
- - - - - - - - - - - 6
FD BDRA,r1
BDRA,r1
abs
$+2
DECJ,NE
DEC
B,abs
B
DBNZ
DEC
.1,/abs
.1
if (--r1 != 0) goto abs;
r1--;
- - - - - - R - - - - 6
FE BDRA,r2
BDRA,r2
abs
$+2
DECJ,NE
DEC
C,abs
C
DBNZ
DEC
.2,/abs
.2
if (--r2 != 0) goto abs;
r2--;
- - - - - - R - - - - 6
FF BDRA,r3
BDRA,r3
abs
$+2
DECJ,NE
DEC
D,abs
D
DBNZ
DEC
.3,/abs
.3
if (--r3 != 0) goto abs;
r3--;
- - - - - - R - - - - 6

Notes:
1: Indeterminate.
2: 2650B only.
3: For Signetics, additional mnemonics listed are only supported for extended notation.
4: For CALM, ADDC/SUBB/RLC/SL/ASL/RRC/SR are equivalent to ADD/SUB/RL/RL/RL/RR/RR respectively, depending on PSW.
For IEEE-694, ADDC/SUBC/ROLC/SHL/SHLA/RORC/SHR/WAIT are equivalent to ADD/SUB/RL/RL/RL/RR/RR/HALT respectively, depending on PSW. See table below.
5: Pseudocode shown assumes 2650B. For 2650/2650A, mask is %01100111 instead of %01111111.
6: INC/DEC are ambiguous, as they can be interpreted as BIRR/BDRR or (less efficiently) as BIRA/BDRA.

F (Flag) column is also used for UF1 (User Flag #1) and UF2 (User Flag #2) bits on 2650B.
R=Read, W=Written, B=Both, -=Neither.
reg = register.
imm = 1-byte immediate value.
port = 1-byte immediate value (representing an extended I/O port address).
rel = 1-byte relative address (direct or indirect).
zero = 1-byte zero page address (direct or indirect).
abs = 2-byte absolute address (direct or indirect, also with optional pre-increment/pre-decrement/indexing for non-branch instructions).

Colours used in the above table are:

Arithmetic, transfer
I/O, PSW, mixed
Branch
Special
Illegal

Table of equivalent instructions:

Signetics CALM IEEE
HALT when II is clear WAIT WAIT
HALT when II is set WAIT HALT
RRR when WC is clear RR ROR
RRR when WC is set RRC RORC
RRR when WC is set and C is clear SR SHR
ADD when WC is clear ADD ADD
ADD when WC is set ADDC ADDC
SUB when WC is clear SUB SUB
SUB when WC is set SUBB SUBC
RRL when WC is clear RL ROL
RRL when WC is set RLC ROLC
RRL when WC is set and C is clear SL|ASL SHL|SHLA

Arithmetic shift right (ASR (CALM)/SHRA (IEEE-694)) is not available on these CPUs.

Relative branches are calculated these from the next instruction, ie. the IAR is incremented by 2 so it points to the start of the next instruction, then the branch is calculated. Indirect branches are the same as direct ones except that you must add $80 to the operand value.

Relative to next instruction Relative to this instruction Operand value
-64 = $-40-62 = $-3E$40
-63 = $-3F-61 = $-3D$41
-62 = $-3E-60 = $-3C$42
-61 = $-3D-59 = $-3B$43
-60 = $-3C-58 = $-3A$44
-59 = $-3B-57 = $-39$45
-58 = $-3A-56 = $-38$46
-57 = $-39-55 = $-37$47
-56 = $-38-54 = $-36$48
-55 = $-37-53 = $-35$49
-54 = $-36-52 = $-34$4A
-53 = $-35-51 = $-33$4B
-52 = $-34-50 = $-32$4C
-51 = $-33-49 = $-31$4D
-50 = $-32-48 = $-30$4E
-49 = $-31-47 = $-2F$4F
-48 = $-30-46 = $-2E$50
-47 = $-2F-45 = $-2D$51
-46 = $-2E-44 = $-2C$52
-45 = $-2D-43 = $-2B$53
-44 = $-2C-42 = $-2A$54
-43 = $-2B-41 = $-29$55
-42 = $-2A-40 = $-28$56
-41 = $-29-39 = $-27$57
-40 = $-28-38 = $-26$58
-39 = $-27-37 = $-25$59
-38 = $-26-36 = $-24$5A
-37 = $-25-35 = $-23$5B
-36 = $-24-34 = $-22$5C
-35 = $-23-33 = $-21$5D
-34 = $-22-32 = $-20$5E
-33 = $-21-31 = $-1F$5F
-32 = $-20-30 = $-1E$60
-31 = $-1F-29 = $-1D$61
-30 = $-1E-28 = $-1C$62
-29 = $-1D-27 = $-1B$63
-28 = $-1C-26 = $-1A$64
-27 = $-1B-25 = $-19$65
-26 = $-1A-24 = $-18$66
-25 = $-19-23 = $-17$67
-24 = $-18-22 = $-16$68
-23 = $-17-21 = $-15$69
-22 = $-16-20 = $-14$6A
-21 = $-15-19 = $-13$6B
-20 = $-14-18 = $-12$6C
-19 = $-13-17 = $-11$6D
-18 = $-12-16 = $-10$6E
-17 = $-11-15 = $-F$6F
-16 = $-10-14 = $-E$70
-15 = $-F-13 = $-D$71
-14 = $-E-12 = $-C$72
-13 = $-D-11 = $-B$73
-12 = $-C-10 = $-A$74
-11 = $-B -9 = $-9$75
-10 = $-A -8 = $-8$76
-9 = $-9 -7 = $-7$77
-8 = $-8 -6 = $-6$78
-7 = $-7 -5 = $-5$79
-6 = $-6 -4 = $-4$7A
-5 = $-5 -3 = $-3$7B
-4 = $-4 -2 = $-2$7C
-3 = $-3 -1 = $-1$7D
-2 = $-2 0 = $0$7E
-1 = $-1 +1 = $+1$7F
0 = $0 +2 = $+2$00
+1 = $+1 +3 = $+3$01
+2 = $+2 +4 = $+4$02
+3 = $+3 +5 = $+5$03
+4 = $+4 +6 = $+6$04
+5 = $+5 +7 = $+7$05
+6 = $+6 +8 = $+8$06
+7 = $+7 +9 = $+9$07
+8 = $+8+10 = $+A$08
+9 = $+9+11 = $+B$09
+10 = $+A+12 = $+C$0A
+11 = $+B+13 = $+D$0B
+12 = $+C+14 = $+E$0C
+13 = $+D+15 = $+F$0D
+14 = $+E+16 = $+10$0E
+15 = $+F+17 = $+11$0F
+16 = $+10+18 = $+12$10
+17 = $+11+19 = $+13$11
+18 = $+12+20 = $+14$12
+19 = $+13+21 = $+15$13
+20 = $+14+22 = $+16$14
+21 = $+15+23 = $+17$15
+22 = $+16+24 = $+18$16
+23 = $+17+25 = $+19$17
+24 = $+18+26 = $+1A$18
+25 = $+19+27 = $+1B$19
+26 = $+1A+28 = $+1C$1A
+27 = $+1B+29 = $+1D$1B
+28 = $+1C+30 = $+1E$1C
+29 = $+1D+31 = $+1F$1D
+30 = $+1E+32 = $+20$1E
+31 = $+1F+33 = $+21$1F
+32 = $+20+34 = $+22$20
+33 = $+21+35 = $+23$21
+34 = $+22+36 = $+24$22
+35 = $+23+37 = $+25$23
+36 = $+24+38 = $+26$24
+37 = $+25+39 = $+27$25
+38 = $+26+40 = $+28$26
+39 = $+27+41 = $+29$27
+40 = $+28+42 = $+2A$28
+41 = $+29+43 = $+2B$29
+42 = $+2A+44 = $+2C$2A
+43 = $+2B+45 = $+2D$2B
+44 = $+2C+46 = $+2E$2C
+45 = $+2D+47 = $+2F$2D
+46 = $+2E+48 = $+30$2E
+47 = $+2F+49 = $+31$2F
+48 = $+30+50 = $+32$30
+49 = $+31+51 = $+33$31
+50 = $+32+52 = $+34$32
+51 = $+33+53 = $+35$33
+52 = $+34+54 = $+36$34
+53 = $+35+55 = $+37$35
+54 = $+36+56 = $+38$36
+55 = $+37+57 = $+39$37
+56 = $+38+58 = $+3A$38
+57 = $+39+59 = $+3B$39
+58 = $+3A+60 = $+3C$3A
+59 = $+3B+61 = $+3D$3B
+60 = $+3C+62 = $+3E$3C
+61 = $+3D+63 = $+3F$3D
+62 = $+3E+64 = $+40$3E
+63 = $+3F+65 = $+41$3F

Eg. if you found the bytes $C8 and $50 at addresses $0100 and $0101:
$C8 is the opcode STRR,R0 (you can find this out from eg. WinArcadia's "Help|Opcodes..." subwindow).
We look up the operand value $50 on the above table (right-hand column). Now, looking at the central column, we see that it means -46 (which is $-2E in hex), relative from this instruction.
So, the instruction is STRR,R0 $0100+$-2E, or, in other words, STRR,R0 $00D2.
If we had instead found the bytes $C8 and $D0 at addresses $0100 and $0101, the instruction would instead be STRR,R0 *$00D2 (since $D0-$80=$50).

Four-digit decimal numbers can be implemented as follows. Two decimal digits can be packed into each byte, one digit per nybble.
The numbers are relative to $66, eg:

    addi,r0 $65 means -1
    addi,r0 $66 means ±0
    addi,r0 $67 means +1

To add 1 to a four-digit decimal number, use the following code:

    ppsl    $08          ;PSL |= %00001000; // set WC (With Carry) bit
    cpsl    $01          ;PSL &= %11111110; // clear C (Carry/Borrow) bit
    loda,r0 LOWBYTE
    addi,r0 $67
    dar,r0
    stra,r0 LOWBYTE
    loda,r0 HIGHBYTE
    addi,r0 $66          ;add 0, but any carry is applied
    dar,r0
    stra,r0 HIGHBYTE
    cpsl    $08          ;PSL &= %11110111; // clear WC (With Carry) bit

High byte, bits 7..4: thousands digit (%0000..%1001)
High byte, bits 3..0: hundreds  digit (%0000..%1001)
Low  byte, bits 7..4: tens      digit (%0000..%1001)
Low  byte, bits 3..0: ones      digit (%0000..%1001)

If your game is larger than 4K, you will need to be aware of the following rules.
The CPU divides the 32K address space into 4 pages, each of 8K, as follows:

PAGE0 equ $0000 ;$0000..$1FFF: 1st page
PAGE1 equ $2000 ;$2000..$3FFF: 2nd page
PAGE2 equ $4000 ;$4000..$5FFF: 3rd page
PAGE3 equ $6000 ;$6000..$7FFF: 4th page

Execution of code cannot flow across page boundaries (wraparound will occur instead).
For absolute non-branch instructions (LODA, STRA, etc.), direct loads and stores can be done only on the current page. Eg. this will not work as expected:

$2000: lodi,r0 $51
$2002: stra,r0 $1800
$2005: retc,un

because address $3800 will be written to instead of address $1800. But you can do an indirect load/store to any address. Eg.

$2000: lodi,r0 $51
$2002: stra,r0 *$2007
$2005: retc,un
$2007: dw      $1800

will work correctly (although unfortunately it is slower than a direct access). Also, sometimes you can take advantage of mirroring to perform your work on the current page and let the machine mirror it to the other pages. For example, the $3800 in the example above is a mirror of $1800 on Emerson and Tele-Fever and therefore would in fact work on those machines (but not on a Palladium).

The operand field (two bytes) for absolute non-branch instructions is as follows (for eg. LODA,reg opcode):

bit  15:     indirect addressing flag
bits 14..13: index control:
             %00 = no indexing
                   reg is destination register
             %01 = pre-increment indexing (++)
                   reg is index register
                   r0 is destination register
             %01 = pre-decrement indexing (--)
                   reg is index register
                   r0 is destination register
             %11 = normal indexing
                   reg is index register
                   r0 is destination register
bits 12.. 0: offset ($0000..$1FFF) (8K range) from start of page ($0/$2000/$4000/$6000)

Absolute branch instructions (BCTA, BSTA, etc.) are not subject to this restriction (since they use 15 rather than 13 bits for the address) and therefore can perform direct (or indirect) branches to anywhere in the 32K memory map.
The operand field (two bytes) for absolute branch instructions is:

bit  15:     indirect addressing flag
bits 14.. 0: absolute address ($0000..$7FFF) (32K range)

The effective address is decoded by a real 2650 after the decision is made about whether a branch will be taken, not before. This is important because "entering the indirect addressing sequence adds two cycles (6 clock periods) to the execution time of an instruction." The 2650 manual seems to imply elsewhere that the effective address is calculated before the instruction itself is executed. However, this has now been proven to be wrong. The time penalty for indirection is applied only if the branch is actually taken.

EORZ r0 is always better than LODI,r0 $00.

BCTA,un $003F (or less), or BCTA,un $7FC0 (or more), are never better than ZBRR. And likewise for BSTA vs. ZBSR.

COMZ r0 is always better than CPSL $C0. Both yield CC=EQ.

These are all the same in effect, size and speed:

ANDI,Rn $FF
EORI,Rn $00
IORI,Rn $00

All set CC according to r0.

These are both the same in effect, size and speed:

LODZ r0 (indeterminate!)
IORZ r0

Both set CC according to r0.

Note that LODZ r0 can (and in fact does, on the particular real Australian PAL Emerson Arcadia 2001 tested) have indeterminate side effects (and therefore is not really equivalent to IORZ r0).

These are both the same in effect, size and speed:

LODI,rn $FF
IORI,rn $FF

Both set rn to $FF and set CC to LT.

These are both the same in effect, size and speed:

LODI,rn $0

ANDI,rn $0

Both set rn to $00 and set CC to EQ.

Project Numbers

Electronics Australia:

Project Reference Description EA Issue Pages Main chip(s) Retailer
77ut2 2/CC/16
2/CC/17
Video Data Terminal Jan 1977
Feb 1977
32-37
42-47
Signetics 2513 character generator
Nat. Semi. MM5740AAF keyboard encoder
?
77up2 2/CC/18 2650 Baby Computer Mar 1977 68-69,71-73 Signetics 2650 CPU AT ($75 in Feb '78)
77cc4 2/CC/19 CUTS cassette interface Apr 1977 40-45 Signetics 555 timer ?
77up5 8/M/13 "Mini-SCAMP" computer Apr 1977 ? SC/MP CPU ?
? 2/CC/23 Low Cost VDU Feb 1978 64-65,67-68 Signetics 2513 character generator AT ($99.50 in Feb-Apr '78)
78m5 2/CC/25? ├ Video modulator (& power supply) for Low Cost VDU Apr 1978 48-49,51,53,55-56 - AT ($22.50 in Feb '78)
78ut4 2/CC/25 ├ Keyboard for Low Cost VDU Apr 1978 48-49,51,53,55-56 - ?
? 2/CC/30 └ Alternative keyboard for Low Cost VDU Sep 1978 92-93 MM5303M ?
78up5 2/CC/26 2650 Mini Computer May 1978 54-58 Signetics 2650 CPU ?
78up9 2/CC/32 ├ Expansion Board for 2650 Mini Computer Nov 1978 70-73,75-76 - ?
78up10 2/CC/33 ├ Extra RAM for 2650 Mini Computer Dec 1978 83,85,87-88 2114 SRAMs ?
79up1 2/CC/35 └ EPROM Programmer for 2650 Mini Computer et al. Feb 1979 84-86,88-89 2704/2708 EPROMs ?
78ut9 2/CC/28
2/CC/29
Ultra Low Cost VDU Aug 1978
Sep 1978
82-86
82-83,85-87
Signetics 2513 character generator
Motorola 6800 CPU
?
? 2/CC/46 └ Serial Interface for Ultra Low Cost VDU Nov 1979 83,85,87-88 Signetics 2536 UART ?

Electronics Today International:

Project Description Magazine Pages Main chip(s) Retailer
ETI-560 Mains Cable Seeker ETI AU May 80 ? - ?
ETI-560 Low Cost VDU ETI UK Aug 76
ETI UK Sep 76
ETI UK Oct 76
56-57
10-16
30-31
Signetics 2513 character generator RF Equipment Spares (£445 in Oct '76)
ETI-632 VDU ETI AU Jan 77
ETI AU Feb 77
ETI AU Mar 77
95-99
69-77
81-84,87-89
Signetics 2513 character generator AT ($158.50 in Mar '77), Orbit
ETI-630 ├ Hex display for ETI-631 or SCMPIO ETI AU Dec 76 56-? ? AEC, AT ($13.75 in Dec '76)
ETI-631 ├ ASCII keyboard & encoder ETI AU Dec 76 47-52 Harris HD0165 keyboard encoder AEC, AT, Orbit
ETI-631F ├ ASCII keyboard & encoder for System 68 ETI UK Apr 77 25-30 Harris HD0165 keyboard encoder ?
ETI-631-2 ├ ASCII keyboard & encoder ETI AU Apr 77 55-59 4078 glue logic AEC, AT, Orbit
ETI-633 └ TV Sync Generator for ETI-632 (and others) ETI AU Jan 77 65-68 4072 counter AEC, AT ($17.75 in Mar '77)
ETI-634 EDU interface ETI AU Aug 78 ? Intel 8080 CPU -
ETI-635 S-100 Microcomputer Power Supply ETI AU Sep 77 66-69 - -
ETI-636 ├ Low Cost S-100 Motherboard ETI AU May 80 52-54 - ?
ETI-642 ├ 16K S-100 RAM card ETI AU Feb 79 53-57 2114 SRAMs ?
ETI-682 └ S-100 PROM board ETI AU Mar 81 ? ? ?
ETI-637 CUTS cassette interface ETI AU Jan 78 25-28 Signetics 555 timer AEC, AT, DSE, SV
ETI-638 EPROM programmer ETI AU Jul 78 ? Motorola 6800 CPU AEC, AT
ETI-639 Computerized musical doorbell ETI AU Mar 78 ? ? AT
ETI-640
aka DG640, MW640
S-100 VDU for 2650-based machines (and others) ETI AU Apr 78
ETI AU May 78
ETI AU Jun 78
32-35
89-95
57-60
MCM6574/MCM6674 character generator AT, Orbit, SV
ETI-681 aka TCT PCG └ S-100 Programmable Character Generator for ETI-640 (and others) ETI AU Jun 80 67-74 2114 SRAMs AT ($150-$175 (est.) in Jun '80; $140 in Jul '80)
ETI-641 S-100 thermal printer based on Philips EUR-10E023LE ETI AU Sep 78 ? Intel 8080 CPU -
ETI-643 Universal EPROM programmer card ETI AU Dec 79
ETI AU Jan 80
?
?
Intel 8080 CPU ?
ETI-644 Modem ETI AU Oct 82
ETI Computer Projects #1
?
?
? Altronics, Jaycar, Microtrix, RIE
ETI-644A └ A revision for the ETI-644 modem ETI Computer Projects #1 ? ? ?
ETI-645 A turtle robot (aka "Tasman Turtle") ETI AU Feb 82
ETI AU Apr 82
ETI AU May 82
ETI AU Jun 82
82
29-35
24-29,32,36
42-46,48,51
SAA1027 motor controllers Flexible Systems (assembled) ($799 in Feb '82)
ETI AU (minimum kit) ($349 in Apr-Jul '82)
ETI-646 ├ A hand controller for the turtle robot ETI AU Jul 82 84-86 4011 quad NAND gates Flexible Systems ($55 (kit) and $79 (assembled) in Jul '82)
ETI-647 └ Speech synthesizer for the turtle robot (and others) (aka "Turtle Talk") ETI AU Sep 82
ETI AU Oct 82
81-86
81-84,86-89
MM54104 SPC
Flexible Systems ($240 in Jun '82), ETI AU ($250 in Oct '82), RIE
ETI-648 Micro-Grasp robot arm ETI Computers & Computing #4 6-13,15-19 - ?
ETI-649 Light pen for Microbee ETI Computers & Computing #4 ? ? ?
ETI-650 STAC (Standard Timer And Controller) timer ETI AU Nov 78 ? ? AT
ETI-651 Binary-to-hex number converter ETI AU Jun 79 ? Signetics 2650 CPU ?
ETI-652 Atari joystick interface for System 80 ETI AU Aug 82 ? ? ?
ETI-653 16-channel computer output driver ETI Computers & Computing #4 ? ? ?
ETI-654 General purpose Apple I/O card ETI Computers & Computing #4 ? ? ?
ETI-656 EPROM debugger ETI Computer Projects #1 35-37 2716 EPROM ?
ETI-658 RS-232 breakout box ETI Computer Projects #1 ? ? ?
ETI-659 VIC-20 audio cassette interface ETI AU May 84 ? ? ?
ETI-660 Learner's microcomputer ETI AU May-Jun 81, Oct-Nov 81 ? 1802 CPU AEC ($99 in Apr '82)
ETI-661 └ Chord tutor adaptor for ETI-660 ETI AU Nov 84 ? ? ?
ETI-662 6802 processor board ETI AU Apr 84 ? Motorola 6802 CPU ?
ETI-664 Hobbybot robot ETI AU Nov-Dec 85 ? ? ?
ETI-665 Computing routing switch ETI AU Oct 85 ? ? ?
ETI-666 Printer switch ETI AU Feb 85 ? ? ?
ETI-667 Printer sharer ETI AU Apr 85 ? ? ?
ETI-668 Microbee EPROM programmer ETI AU Feb 83 ? ? ?
ETI-669 └ Upgrade for ETI-668 ETI AU Sep 88 ? ? ?
ETI-671 Microbee parallel printer interface ETI Computer Projects #1 ? ? ?
ETI-672 Microbee teletype printer interface ETI Computer Projects #1 ? ? ?
ETI-673 Microbee multi-PROM interface ETI Computer Projects #1 ? ? ?
ETI-674 Microbee joystick controller ETI AU Dec 83 ? ? ?
ETI-675 Microbee serial-parallel interface ETI Computer Projects #1 ? ? ?
ETI-676 Microbee RS-232 interface ETI Computer Projects #1 ? ? ?
ETI-677 Chatterbox voice synthesiser for Centronics parallel port ETI AU Jan 85 ? Votrax SC-01 synthesizer ?
ETI-678 Microbee ROM reader ETI Computer Projects #1 ? ? ?
ETI-679 Microbee joystick adapter ETI AU Jun 85 ? ? ?
ETI-680 aka DG680 Microcomputer ETI AU Nov 79 ? Zilog Z80 CPU ?
ETI-683 Computer controller ETI AU Dec 84 ? ? ?
ETI-684 Intelligent modem ETI AU Dec 85, Feb-Mar 86, Jun-Aug 86 ? ? ?
ETI-685 2650-based Single Board Computer for S-100 bus ETI AU Dec 81 ? Signetics 2650A/2650A-1 CPU ?
ETI-670 ├ Low Cost ASCII Keyboard for ETI-685 (and others) ETI AU May 82 99-103 GI AY-5-2376 keyboard encoder AEC, Amtex, Electronic Agencies, RIE
ETI-686 └ PPI-based EPROM Programmer for ETI-685 (and others) ETI AU Oct 82
ETI Computer Projects #1
72-73,75-78
40-44,75
2708/2716 EPROMs Ron Koenig
ETI-687 VZ-200 update ETI AU Jul 86 ? ? ?
ETI-688 Bipolar PROM Programmer ETI AU Jun 83
ETI Computers & Computing #4
46-49
20-23
- ?
ETI-689 Bus sharing switch ETI Jan 86 ? ? ?
ETI-690 "Little Big Board" computer ETI Computer Projects #1 ? Zilog Z80A CPU ?
ETI-692 Current Loop Interface (TTY to RS-232 adapter) ETI AU Jan 85 68-69,72 ? ?
ETI-804 Pong game (B&W) ETI AU Nov 76
ETI UK May 77
44-51
12-16
General Instrument AY-3-8500 Appollo ($52.50 in Jan '77), AT, DSE
ETI-804 ├ Pong game (colour) - - GI AY-3-8500 + AY-3-8515 Appollo ($82.50 in Jan '77)
ETI-804 ├ Colour converter - - General Instrument AY-3-8515 Appollo ($34.50 in Jan '77)
ETI-804-1 └ Rifle kit ETI AU Mar 77 54-55 - Appollo ($25 in Jan '77), DSE
ETI-810 Stunt cycle game ETI AU Jun 78 31-37 General Instrument AY-3-8760 DSE, Orbit
ETI-811 Tank game ETI AU Oct 78 ? General Instrument AY-3-8710 AEC, DSE, Orbit

ETI-630 scan is missing because the available scan of ETI AU Dec '76 is missing pages 55-62.
ETI-638,641,643,647 can be connected to any CPU (but the provided software is not written for the 2650).
ETI-645 (and therefore also its accessory projects) is compatible with ETI-685 as mentioned in ETI Aug 1982, p. 91.
ETI-685 can use PIPBUG, BINBUG or SBCBUG (which is basically BINBUG + ACOS). It is compatible with ETI-635,636,640,642,645,670,681,682,686. The cassette interface (promised in ETI AU Dec 1981, p. 104) and real-time clock/calendar (promised in ETI AU Mar 1982, p. 95) were never published.
All dollar prices in the preceding two tables are in $AUD. Prices are generally for kits, except where otherwise specified, and are generally inclusive of taxes but exclusive of postage.
Appollo (with two Ps) is really how the company name was spelt.
AEC = All Electric Components (formerly ED&E Sales), AT = Applied Technology, DSE = Dick Smith Electronics, RIE = Rod Irving Electronics, SV = Silicon Valley.

Other magazines and non-projects:

Project Description Retailer Magazine Price
CT750 Kansas City cassette interface (assembled) Applied Technology EA Nov '77, p. 98 $AUD37.50
? Kansas City cassette interface (kit) Applied Technology EA Nov '77, p. 98 $AUD22.50
MW850 S-100 motherboard Applied Technology (Owen J. Hill) ? ?
MW864 64K SRAM Applied Technology ? ?
MW6545 CRT controller (S-100 card) (based around MOS/Rockwell 6545 CRT controller chip?) Applied Technology (John Wilmshurst) ? ?
KB04 Universal Keyboard in Teletype Model 33 ASR layout Applied Technology ETI AU Feb '78, p. 70 $AUD59.50
KB05 ├ Number pad Applied Technology ETI AU Feb '78, p. 70 $AUD16.50
KB06 ├ Cursor control Applied Technology ETI AU Feb '78, p. 70 $AUD7.50
KB10 └ Spare key switches Applied Technology ETI AU Feb '78, p. 70 $AUD2
KT9500 Signetics KT9500 (fully buffered kit) Signetics/Philips
Applied Technology
EA Sep '76, p. 64-67
EA Dec '77, p. 72
$AUD165
$AUD199
KT9500 Signetics KT9500 (motherboard with component kit) Applied Technology EA Dec '77, p. 72 $AUD35
PC1001 Prototyping card Signetics/Philips EA Sep '76, p. 64-67 $AUD345
PC1500 aka ABC1500 Evaluation kit (Adaptable Board Computer) Signetics/Philips EA Sep '76, p. 64-67 $AUD245
PC1600SC Prometheus assembler Signetics/Philips ? ?
PC2000 4K RAM expansion board Signetics/Philips EA Sep '76, p. 64-67 $AUD400
SCMPIO Front panel kit (TTY replacement) (for Baby 2650) Applied Technology EA Mar '77, p. 64 $AUD49.50
? EA Baby 2650 -> KT9500 conversion kit Applied Technology EA Dec '77, p. 72 $AUD142
EPS 9965 (KB05) Fully encoded ASCII keyboard Elektor Elektor Nov '78, p. 6-11 £6.50/$USD14.35
EPS 9966 Elekterminal Elektor Elektor Dec '78, p. 16-24 £10.85/$USD23.95
EPS 77084 AY-3-8500-based Pong game Elektor Elektor Jul/Aug '77, p. 40-41 £2.05/$USD4.50

CT750 was "adapted from a design described in Radio Electronics" (presumably sometime in Nov '75-May '77) but this design has not been located.
Dark grey items are irrelevant. Light grey items are semi-relevant (eg. could be feasibly adapted).
Elektor magazine articles pertaining to the Elektor TV Games Computer are covered in its Coding Guide .

Component Numbers

Component Manufacturer Description Used in
? ? Main transformer, 10V/2A secondary Elektor power supply [Tr1]
? ? Zener diode Voltmace power supply [D10]
? ? 5.6V/400mW zener diode Elektor EPROM [D1]
1N4001 ? Silicon diode Arcadia [D1]
1N4003 ? Silicon diode Astro Wars CPU [44]
1N4004 ? Silicon diode Lazarian game, Lazarian sound
1N4148
1N484A
1N914
1N914A
? Silicon diode Voltmace processor/video [D9], Voltmace A/V [D1..8,12], Elektor modulator [D1], Elektor EPROM [D2], PC1001 [D20], EA 78up5, ETI-685 [D1..3], ETI-692 [D1,2], ETI-640 [D1..11], ETI-681 [D3,4], Selbstbaucomputer data input display, Selbstbaucomputer address input display, Selbstbaucomputer keyboard & display, Astro Wars CPU [45], Astro Wars sound [D1..4], Lazarian game, Lazarian sound
1702A Intel MOS erasable PROM TWIN PROM burner [PROM 1]
OA91 ? Germanium diode ETI-640 [D12..15]
2N2219 ? Silicon NPN transistor Elekterminal [T4]
2N2894
2N4258
? Silicon NPN transistor ETI-640 [Q2]
2N3055 ? Silicon NPN transistor Elektor power supply [T2], ETI-636 [Q3]
2SB561C ? Transistor Arcadia [Q1]
2101-1N ? 256*4-bit (128-byte) SRAM Astro Wars CPU [27]
2102
2102-1
2102A4
2102AL4
21L02-1
Signetics 1024*1-bit (128-byte) SRAM EA LCVDU [IC40..45], Elekterminal [IC1..6], ETI-640 [IC22..31], ETI-681 [IC7,8], CD2650 [IC30..45], Galaxia
2112B
2112-2
2112-A4
MM2112-4
? 256*4-bit (128-byte) SRAM Basic Elektor [IC13..28], EA 77up2, ETI LCVDU [IC24,25], Prometheus [IC15..22,24..31], Instructor 50, Astro Wars CPU [28]
2114
2114-A4
2114L-4
TMS2114L-45NL
Fairchild?
Fairchild?
Fairchild?
TI
1024*4-bit (512-byte) SRAM Arcadia [U11..12], Palladium [A1..2], Interton, Come-Frutas game, expanded Elektor [IC4..9], EA 78up5, ETI-685 [IC11..14,26..29], ETI-681 [IC14..17], Astro Wars CPU [29], Galaxia, Lazarian game
2332 Commodore 4K PROM Arcadia cartridges
? ? Inductor? 1µH Elektor modulator [L1]
2410077 ? Ferrite choke coil (resistor type) 10µH Arcadia [L1,4..5]
2410144 ? Ferrite bead 4T Arcadia [L2..3]
2504 Signetics 1024-bit DSR (Dynamic Shift Register) ?
2513
RO-3-2513
Signetics
General Instrument
Character Generator EA LCVDU [IC35], ETI LCVDU [IC7], Elekterminal [IC11]
2519 Signetics 40-bit SSR (Static Shift Register) ?
2602 Signetics 1024*1-bit (128-byte) SRAM ?
2606 Signetics 256*4-bit (128-byte) SRAM PC1001 [IC6..9,15..18]
2608 (CN0035) Signetics 1K PROM (PIPBUG 1 monitor) EA77 up2, EA 78up5
? ? Trimmer capacitor, 0..22pF Basic Elektor [C9]
2610007 ? Trimmer capacitor, 7..25pF Arcadia [C8]
2616 Signetics 2K PROM Interton, Fountain cartridges, basic Elektor [IC2] (monitor BIOS)
2621
2621-I
2621 N
Signetics PAL USG (Universal Sync Generator) PAL Arcadia, Palladium [U8], Interton [IC3], Fountain [IC7], Rowtron, Voltmace processor/video [U?], basic Elektor [IC4], Astro Wars CPU [24], Galaxia, Lazarian game
2622 Signetics NTSC USG (Universal Sync Generator) NTSC Arcadia [U7]
2632 Signetics 4K PROM Interton, Fountain cartridges
2636
2636-I
2636 N
Signetics PVI (Programmable Video Interface) Interton main board [IC2], Fountain [IC2], Rowtron, Voltmace processor/video [U2], basic Elektor [IC3], Astro Wars CPU [25], Galaxia, Lazarian game
2637 Signetics UVI (Universal Video Interface) Arcadia [U9], Palladium [A8]
2650 Signetics CPU (<= 1.25 MHz, 1975) Arcadia [U10], PC1001 [IC23], EA 77up2, EA 78up5, Instructor 50, CD2650 [IC1], main PHUNSY, Galaxia, Lazarian
2650-1 Signetics CPU (<= 2 MHz, <= 1976) ?
2650A
2650-AI
2650A N
Signetics CPU (<= 1.25 MHz, 1977) Palladium [A9], Interton main board [IC1], Fountain [IC1], Rowtron, Voltmace processor/video [U1], basic Elektor [IC1], ETI-685 [IC30], Astro Wars CPU [26]
MAB 2650A Philips CPU (<= 1.25 MHz, 197x) Selbstbaucomputer CPU [IC1]
2650A-1 Signetics CPU (<= 2 MHz, 1977) Malzak
2650B Signetics CPU (<= 1.25 MHz, 1977) None?
2650B-1 Signetics CPU (<= 2 MHz, 1977?) None?
2650-P-02 Synertek *NOT* Signetics 2650-compatible! -
2651 Signetics PCI (Programmable Communications Interface) MIKIT?
2652 Signetics Multi-Protocol Comms Circuit (incl. Sync. Data Link Control (SDLC)) ?
2653 Signetics Polynomial Generator/Checker ?
2655
8255A
Signetics
Intel
PPI (Programmable Peripheral Interface) ETI-685 [IC32]
2656 Signetics SMI (System Memory Interface) Instructor 50
2657 Signetics DMA (Direct Memory Access) controller ?
2661 Signetics EPCI (Enhanced Programmable Communication Interface) ?
2670 Signetics Display Character and Graphics Generator ?
2671 Signetics Programmable Keyboard and Communications Controller ?
2672 Signetics Programmable Video Timing Controller ?
2673 Signetics Video Attributes Controller ?
2681 Signetics DUART (Dual Asynchronous Receiver/Transmitter) ?
? ? Capacitor, 8.2pF Elektor modulator [C3..5]
? ? Capacitor, 15pF Voltmace A/V [29]
? ? Capacitor, 22pF Elektor modulator [C1,6], expanded Elektor [C1..2]
? ? Capacitor, 27?pF Voltmace A/V [C28]
? ? Capacitor, 33pF Elektor modulator [C7]
? ? Capacitor, 120pF Elektor modulator [C2]
? ? Capacitor, 220pF Expanded Elektor [C3..5]
? ? Capacitor, 470pF Basic Elektor [C8]
? ? Capacitor, 1nF Voltmace processor/video [C18,37], Voltmace A/V [C27], basic Elektor [C2,4,14], Elektor EPROM [C1]
? ? Capacitor, 3.3nF Basic Elektor [C3]
? ? Capacitor, 3.9nF Basic Elektor [C5]
? ? Capacitor, 4.7nF Elektor randomizer [C1]
? ? Capacitor, 10nF Elektor EPROM [C3]
? ? Capacitor, 47nF Voltmace user I/O [C1..2], Voltmace A/V [C17], Basic Elektor [C6..7]
? ? Capacitor, 100nF Voltmace processor/video [C7], Voltmace power supply [C3..6,8,10..11,36,Cx], Voltmace A/V [C9,12..14,24,36], Voltmace cartridges [C1,?], Elektor randomizer [C3..5], expanded Elektor [C6..26]
? ? Capacitor, 150nF MKH Basic Elektor [C1,15..18,20]
? ? Capacitor, 220nF Voltmace power supply [C21..22]
? ? Capacitor, 2.2µF Voltmace A/V [C16]
? ? Capacitor, 10µF/16V Voltmace A/V [C25..26,32], Elektor randomizer [C2]
? ? Capacitor, 47µF Voltmace cartridges [C?]
? ? Capacitor, 100µF/6V Voltmace power supply [C23], Basic Elektor [C19]
? ? Capacitor, 220µF/6V Basic Elektor [C13]
? ? Capacitor, 1mF Voltmace power supply [C19]
? ? Capacitor, 4.7mF/16V Voltmace power supply [Cx], Elektor power supply [C1]
? ? Tantalum capacitor, 220nF/16V Elektor EPROM [C2]
? ? Tantalum capacitor, 1µF/16V Elektor modulator [C8..9]
? ? Tantalum capacitor, 2.2µF/16V Elektor power supply [C2..3]
? ? Electrolytic or tantalum capacitor, 1.5µF/35V EA77up2
2703 10 2 ? Electrolytic capacitor, 10µF/10V Arcadia [C1]
2703 20 3 ? Electrolytic capacitor, 200µF/10V Arcadia [C21]
2703 22 4 ? Electrolytic capacitor, 2.2mF/16V Arcadia [C17]
2708 ? 1024*8-bit (1K) EPROM ETI-685 [IC15,16], Astro Wars [31..42], Galaxia
2716 Texas Instruments 2K*8-bit (2K) EPROM , Elektor, ETI-685 [IC15,16], Selbstbaucomputer memory [IC3], Galaxia, Lazarian game
? ? NPO ceramic capacitor, 47pF EA77up2
? ? Ceramic capacitor, 56pF Basic Elektor [C12]
? ? Ceramic capacitor, 68pF Basic Elektor [C10..11]
2722 27 3-3 ? Ceramic capacitor, 270pF/25V Arcadia [C6..7,12]
? ? NPO ceramic capacitor, 330pF EA77up2
2722 50 3-3 ? Ceramic capacitor, 500pF/25V Arcadia [C10..11]
2722 10 4-1 ? Ceramic capacitor, 1nF/25V Arcadia [C9,20]
? ? LV polyester capacitor, 47nF EA77up2
? ? LV polyester capacitor, 220nF EA77up2
2722 40 5-1 ? Ceramic capacitor, 40nF/25V Arcadia [C19]
2732
D2732D
?
NEC
4K*8-bit (4K) EPROM Voltmace cartridges [U1], Come-Frutas game, Elektor, Lazarian game
2732 47 5-3 ? Mylar capacitor, 47nF/50V Arcadia [C2]
2732 10 6-1 ? Mylar capacitor, 100nF/25V Arcadia [C13,16]
2732 10 6-3 ? Mylar capacitor, 100nF/50V Arcadia [C3,5,14..15,18]
2732 47 6-3 ? Mylar capacitor, 470nF/50V Arcadia [C4]
28C16 Intel 2K EEPROM Selbstbaucomputer
2981 ? ? Instructor 50
? ? Potentiometer 220Ω Basic Elektor [P2]
? ? Potentiometer 1,000Ω Elektor power supply [P1]
? ? Potentiometer 47,000Ω EA77up2
? ? Joystick potentiometer 680,000Ω Basic Elektor [P3..6]
? ? Preset potentiometer 1,000Ω Elektor modulator [P2]
? ? Preset potentiometer 2,200Ω Basic Elektor [P1]
? ? Preset potentiometer 2,500Ω (2,200Ω) Elektor modulator [P1]
? ? Resistor ⅛W 1,800Ω Elektor EPROM [R4]
? ? Resistor ⅛W 22,000Ω Elektor EPROM [R3]
? ? Resistor ⅛W 150,000Ω Elektor EPROM [R2]
? ? Resistor ⅛W 180,000Ω Voltmace A/V [R38,59], Elektor EPROM [R1]
3200 39 1 ? Resistor ¼W 3.9Ω Elektor power supply [R2]
3200 56 2 ? Resistor ¼W 56Ω Arcadia [R51]
3200 68 2 ? Resistor ¼W 68Ω Elektor modulator [R13]
3200 10 3 ? Resistor ¼W 100Ω Voltmace A/V [R81], Elektor modulator [R10..11]
3200 15 3 ? Resistor ¼W 150Ω Elektor modulator [R7], EA77up2
3200 18 3 ? Resistor ¼W 180Ω Arcadia [R30]
3200 22 3 ? Resistor ¼W 220Ω Arcadia [R40,46], Voltmace processor/video [R56], Elektor modulator [R5], basic Elektor [R68]
3200 27 3 ? Resistor ¼W 270Ω Elektor modulator [R6]
3200 33 3 ? Resistor ¼W 330Ω Arcadia [R22?,41], Voltmace A/V [R81]
3200 39 3 ? Resistor ¼W 390Ω Arcadia [R43]
3200 47 3 ? Resistor ¼W 470Ω Arcadia [R42,52], Voltmace A/V [R61,63,VR3], Elektor modulator [R3,9], basic Elektor [R61]
3200 68 3 ? Resistor ¼W 680Ω Voltmace A/V [R65], Basic Elektor [R60]
3200 82 3 ? Resistor ¼W 820Ω Basic Elektor [R58..59]
3200 10 4 ? Resistor ¼W 1,000Ω Arcadia [R6,9,21,44,47], Voltmace processor/video [R24..27,30,52], Voltmace user I/O [RV2], Voltmace A/V [R73..74], Elektor modulator [R4], basic Elektor [R36..38,62,64..66,69], Elektor randomizer [R4..5], expanded Elektor [R15..16], EA77up2
3200 12 4 ? Resistor ¼W 1,200Ω Arcadia [R31,36], Voltmace processor/video [R29,54]
3200 15 4 ? Resistor ¼W 1,500Ω Arcadia [R33,37,50], Elektor modulator [R12], basic Elektor [R54], expanded Elektor [R1..2,9], EA77up2
3200 20 4 ? Resistor ¼W 2,000Ω Arcadia [R7]
3200 22 4 ? Resistor ¼W 2,200Ω Arcadia [R1..5,45,48], Voltmace processor/video [R28], Voltmace power supply [R71], Voltmace A/V [R62,RV1], Elektor power supply [R3..4], basic Elektor [R29,44..45,56,67], expanded Elektor [R11,18], EA77up2
3200 27 4 ? Resistor ¼W 2,700Ω Arcadia [R34,53]
3200 33 4 ? Resistor ¼W 3,300Ω Arcadia [R28..29,38], Voltmace power supply [D10], Voltmace user I/O [R53], Voltmace A/V [R57,64,66]
3200 47 4 ? Resistor ¼W 4,700Ω Arcadia [R32,49], Voltmace processor/video [R1..4,16], Voltmace user I/O [R8..15], Voltmace A/V [R36,67,72], basic Elektor [R22..23,26..27,30..31,39..42,46..53,57], Elektor randomizer [R1..2], expanded Elektor [R7..8,12..13,19..20], EA77up2
3200 56 4 ? Resistor ¼W 5,600Ω Arcadia [R35,39], Voltmace [R35]
3200 68 4 ? Resistor ¼W 6,800Ω Elektor modulator [R8]
3200 10 5 ? Resistor ¼W 10,000Ω Arcadia [R10..15,18..19,23..26], Voltmace processor/video [R17,21,80], Voltmace A/V [R18..20,39..40,68], basic Elektor [R1..21,25,33,35,55], Elektor randomizer [R3], expanded Elektor [R4,14,21], EA77up2
3200 12 5 ? Resistor ¼W 12,000Ω Voltmace A/V [R49], Expanded Elektor [R10,17]
3200 15 5 ? Resistor ¼W 15,000Ω Voltmace user I/O [R6..7], basic Elektor [R24,71]
3200 18 5 ? Resistor ¼W 18,000Ω Voltmace A/V [R51], expanded Elektor [R5]
3200 22 5 ? Resistor ¼W 22,000Ω Elektor modulator [R2], EA77up2
? ? Resistor 27,000Ω Voltmace A/V [R47,60]
3200 33 5 ? Resistor ¼W 33,000Ω Elektor modulator [R1], basic Elektor [R43]
3200 39 5 ? Resistor ¼W 39,000Ω Voltmace A/V [R46], Expanded Elektor [R6]
3200 47 5 ? Resistor ¼W 47,000Ω Voltmace processor/video [R55], Voltmace A/V [R43,45,VR4], basic Elektor [R32,34,70]
? ? Resistor 56,000Ω Voltmace A/V [R50]
3200 82 5 ? Resistor ¼W 82,000Ω Expanded Elektor [R3]
3200 10 6 ? Resistor ¼W 100,000Ω Voltmace processor/video [R5,22..23], Voltmace A/V [R41..42,44,48], basic Elektor [R63], Basic Elektor [R63]
3200 18 6 ? Resistor ¼W 180,000Ω Arcadia [R8,20]
3200 22 6 ? Resistor ¼W 220,000Ω Arcadia [R27]
3200 47 6 ? Resistor ¼W 470,000Ω Arcadia [R16..17], basic Elektor [R28]
? ? Resistor 3W 0.22Ω Elektor power supply [R1]
? ? Resistor 3,900Ω Voltmace A/V [R39]
? ? Resistor 1,000,000Ω Voltmace A/V [R34]
? ? Resistor 1,500,000Ω Voltmace A/V [R31]
? ? Resistor 2,000,000Ω Voltmace user I/O [RVH,VV]
? ? Resistor 2,200,000Ω Voltmace A/V [R32..33]
3410025 ? 3.579545 MHz oscillator Arcadia [X'TAL1]
SKY8867 ? 8.867 MHz oscillator Voltmace processor/video [X1], Basic Elektor [Xtal]
? ? ~27 MHz oscillator Elektor modulator [X1]
? ? 100Ω/500mW loudspeaker Basic Elektor
3450012 ? NTSC modulator Arcadia
3624 Intel? 512*8-bit (512-byte) PROM CD2650 [IC13..20,48..49]
4N28 ? Opto-coupler ETI-692 [IC1..2]
4011
HEF 4011
? Quad 2-input NAND gate Elekterminal [IC16], Selbstbaucomputer cassette interface [IC2]
4015 ? Dual 4-stage shift register Elektor randomizer [IC2]
4016
HEF4016
4066
HEF4066BP
? Quad analog switch Arcadia [U4], Palladium [U3], Rowtron rev. 1, expanded Elektor [IC14], Selbstbaucomputer cassette interface [IC4], Lazarian sound
4024 ? 7-stage binary ripple counter Elekterminal [IC14,15]
CD 4040 ? 12-stage binary ripple counter ETI-640 [IC38,39]
4049 ? Hex inverter (CMOS) PC1001 [IC30]
4051 ? Single 8-channel analog multiplexer/demultiplexer ETI-681 [IC28]
4053
CD4053
CD4053B
HEF4053B
TC4053BP
?
?
?
?
Toshiba
Triple 2-channel multiplexer/demultiplexer Interton I/O, Fountain [IC6], Rowtron rev. 0, Voltmace user I/O [U7], basic Elektor [IC10]
4069
CD4069CN
? Hex inverter gate Arcadia [U6], Palladium [U7], Rowtron rev. 1
4070
CD4070BE
?
RCA
Quad 2-input XOR gate Rowtron, Elektor randomizer [IC1]
4072 ? Dual 4-input OR gate ETI-685 [IC50]
4081
CD4081BE
?
RCA
Quad 2-input AND gate Rowtron, Elekterminal [IC17,21]
4097 ? Single differential 8-channel analog multiplexer/demultiplexer Galaxia
CD 4099 ? 8-bit addressable latch Basic Elektor [IC9]
40097 ? 3-state hex driver Astro Wars CPU [30], Lazarian game
4116 ? 2K DRAM PHUNSY memory
HEF 4528 ? Dual monostable multivibrator Selbstbaucomputer cassette interface [IC3]
5082-4870450 Hewlett-Packard LED indicator DS [L1..41]
555
NE555
Signetics
?
Timer Elektor EPROM [IC1], ETI-685 [IC40], EA LCVDU [IC8], ETI LCVDU [IC1..4,28], ETI-640 [IC8], ETI-681 [IC31..33], CD2650 [IC72], main PHUNSY, Astro Wars sound [IC5], Galaxia
555-3007 Dialco LED indicator PC1001 [D1..19]
6116 IDT 2048*8-bit (2K) SRAM Selbstbaucomputer memory [IC2]
7400
74LS00
? Quad 2-input NAND gate Arcadia [U1], Voltmace cartridges [U2A..E,?A..E], Basic Elektor [IC37], expanded Elektor [IC30..31], Elektor EPROM [IC2], PC1001 [IC28], ETI-685 [IC5,39], EA LCVDU [IC4], ETI LCVDU [IC5,13,14,16,20,21,29], Elekterminal [IC19], Prometheus [IC32,36], ETI-640 [IC16], ETI-681 [IC4,30], Instructor 50, CD2650 [IC25,71,76], PHUNSY interface, PHUNSY video, PHUNSY memory, Selbstbaucomputer CPU [IC5,6], Selbstbaucomputer port unit [IC2], Selbstbaucomputer A/D converter [IC4], Astro Wars CPU [2], Lazarian game
741 ? Operational amplifier ETI-685 [IC6]
7402
74LS02
HD74LS02P
? Quad 2-input NOR gate Rowtron rev. 1, EA 78up9, ETI-685 [IC44], EA LCVDU [IC1,11,21], Instructor 50, PHUNSY memory, Selbstbaucomputer port unit [IC3], Selbstbaucomputer display [IC2], Astro Wars CPU [3], Galaxia, Lazarian game
7403
74LS03
? Quad 2-input NAND gate ETI LCVDU [IC8,9], Instructor 50
7404
74LS04
74LS04N
74S04
DM74LS04N
MM74C04N
?
?
?
?
Nat. Semi.
Nat. Semi.
Hex 1-input inverter gate Arcadia [U2], Palladium [A12,U1], Come-Frutas game, Basic Elektor [IC31], expanded Elektor [IC24,26,28], ETI-685 [IC31,36], EA LCVDU [IC23,28], ETI LCVDU [IC10], Elekterm,48inal [IC18], ETI-640 [IC9,32], Instructor 50, CD2650 [IC53,63,67], main PHUNSY, PHUNSY video, Astro Wars CPU [4,5], Astro Wars sound [IC2], Lazarian game, Lazarian sound
74LS05
741S05PC
?
Fairchild
Hex 1-input inverter gate Rowtron, Basic Elektor [IC30], Selbstbaucomputer data input display [IC1,2], Selbstbaucomputer CPU [IC4], Selbstbaucomputer address input display [IC1,2]
7406 ? Hex 1-input open collector inverter gate DS [IC5..9], PHUNSY interface, Astro Wars CPU [6], Lazarian game, Lazarian sound
7407 ? Hex buffer gate Main PHUNSY, PHUNSY video
7408
74LS08
? Quad 2-input AND gate Basic Elektor [IC29], expanded Elektor [IC25], PC1001 [IC29,33], ETI-685 [IC19], EA LCVDU [IC9,11,21,31], Instructor 50, CD2650 [IC11,64,69], Astro Wars CPU [7], Astro Wars sound [IC1], Lazarian game
7410
74LS10
SN74LS10N-10
?
?
TI
Triple 3-input NAND gate Come-Frutas game, Basic Elektor [IC41], EA LCVDU [IC12], ETI-640 [IC33], Instructor 50, main PHUNSY, PHUNSY interface, PHUNSY video, PHUNSY memory, CD2650 [IC54], Astro Wars CPU [8], Galaxia, Lazarian game
7411
74LS11
? Triple 3-input AND gate Instructor 50, CD2650 [IC61,68]
74LS13 ? Dual 4-input NAND gate Main PHUNSY
7414
74LS14
? Hex 1-input inverter gate ETI-685 [IC17], Instructor 50, CD2650 [IC12], Selbstbaucomputer CPU [IC3], Astro Wars CPU [11], Lazarian game
7420
74LS20
? Dual 4-input NAND gate Expanded Elektor [IC32], ETI-685 [IC45], EA LCVDU [IC15,20], CD2650 [IC62], PHUNSY video
7421
74LS21
? Dual 4-input AND gate Palladium [A10], Expanded Elektor [IC29], ETI LCVDU [IC15], Lazarian game
7425 ? Dual 4-input NOR gate with strobe CD2650 [IC70]
74LS26 ? Quad 2-input NAND gate Lazarian game
74LS27 ? Triple 3-input NOR gate Instructor 50, Lazarian game
7430
74LS30
? Single 8-input NAND gate Expanded Elektor [IC16..17,27], PC1001 [IC19], EA LCVDU [IC24], ETI LCVDU [IC30], Prometheus [IC33..34], main PHUNSY, PHUNSY video, PHUNSY memory, Astro Wars CPU [9]
7432
74LS32
? Quad 2-input OR gate Expanded Elektor [IC21..23], ETI-685 [IC38], ETI-681 [IC24], Instructor 50, CD2650 [IC59], PHUNSY interface, Lazarian game
7438
74LS38
? Quad 2-input NAND open collector gate PC1001 [IC34], DS [IC11], EA 77up2, EA 78up5
7442 ? BCD to decimal decoder ETI LCVDU [IC11], P1 [IC24]
74LS51 ? ? Instructor 50
7470 ? AND-gated positive edge triggered J-K flip-flop, asynchronous preset and clear PHUNSY video
7473
74LS73
? Dual J-K flip-flop, asynchronous clear ETI-640 [IC1,2]
7474
74LS74
? Dual D positive edge triggered flip-flop, asynchronous preset and clear Voltmace processor/video [U10A,10B], expanded Elektor [IC20], DS [IC12], ETI-685 [IC43,46], EA LCVDU [IC5], ETI-640 [IC18], Instructor 50, CD2650 [IC23,24,65,75,77], Astro Wars CPU [12], Galaxia, Lazarian game
7475
74LS75
? 4-bit bistable latch, complementary outputs PC1001 [IC36..39], ETI LCVDU [IC26,27], ETI-681 [IC29]
74LS76 ? Dual J-K flip-flop, asynchronous preset and clear Selbstbaucomputer CPU [IC2]
7485
74LS85
? 4-bit magnitude comparator Elektor randomizer [IC4..7], EA LCVDU [IC37,38], Lazarian game
7486
74LS86
74LS86N
? Quad 2-input XOR gate Arcadia [U3,5], Palladium [U2,6], basic Elektor [IC32], ETI LCVDU [IC22,23], ETI-640 [IC17], ETI-685 [IC5,23], PHUNSY video, PHUNSY memory, Astro Wars CPU [10], Lazarian game
7490
74LS90
? Decade counter Palladium [U9], ETI LCVDU [IC6,12], ETI-640 [IC13], Lazarian game
7492
74LS92
? Divide-by-12 counter EA LCVDU [IC26,36], ETI-640 [IC40]
7493
74LS93
? 4-bit binary counter EA LCVDU [IC2,3,10,17..19,27,34,39], ETI LCVDU [IC17..19], ETI-640 [IC10..12,15], main PHUNSY
7495 ? 4-bit shift register, parallel in, parallel out, serial input EA LCVDU [IC25,33]
74LS107 ? Dual J-K flip-flop, clear ETI-685 [IC42]
74109
74LS109
? Dual J-NotK positive-edge-triggered flip-flop, clear and preset Basic Elektor [IC34], Instructor 50, CD2650 [IC66]
74S112
72LS112
? Dual J-K negative-edge-triggered flip-flop, clear and preset Astro Wars CPU [17], Galaxia, Lazarian game
74LS113 ? Dual J-K negative-edge-triggered flip-flop, preset Basic Elektor [IC33,35,36]
74123
74LS123
? Dual monostable Schmitt trigger EA 77up2, EA 78up5, EA LCVDU [IC6,7,13,14,32], CD2650 [IC73], Selbstbaucomputer A/D converter [IC5]
74125
74LS125
? Quad bus buffer, negative enable Elekterminal [IC20], CD2650 [IC46,47], Lazarian game
74126 ? Quad bus buffer, positive enable CD2650 [IC2..10,21,22,78,79]
74LS132 ? Quad 2-input NAND gate ETI-685 [IC21], Selbstbaucomputer A/D converter [IC3]
74LS135 ? Quad XOR/XNOR gate, two inputs to select logic type Galaxia
74LS136 ? Quad 2-input XOR gate Basic Elektor [IC40]
74LS138 ? 3:8 line decoder/demultiplexer, inverting outputs Basic Elektor [IC7], expanded Elektor [IC19], EA 78up9, ETI-685 [IC9,49], Selbstbaucomputer memory [IC1], Selbstbaucomputer display [IC1]
74LS139 ? Dual 2:4 line decoder/demultiplexer, inverting outputs Basic Elektor [IC6], expanded Elektor [IC15], ETI-685 [IC18], Instructor 50, Astro Wars CPU [13], Lazarian game
74145
74LS145
? 4-bit D flp-flp w/ complementary outputs & reset (keypad inputs) Arcadia [U14], Palladium [A6]
74148 ? 8:3 line priority encoder Selbstbaucomputer keyboard [IC4,5]
74153
74LS153
? Dual 4:1 line selector/multiplexer, non-inverting outputs ETI-640 [IC14]
74154
74LS154
Valvo 4:16 line decoder/demultiplexer, inverting outputs Prometheus [IC13], Selbstbaucomputer port unit [IC1]
74LS155 ? Dual 2:4 line decoder/demultiplexer, totem pole Astro Wars CPU [14], Galaxia, Lazarian game
74LS156
74LS156PC
?
Fairchild
Dual 2:4 line decoder/demultiplexer, open collector Palladium [A3], Interton I/O, Fountain [IC4], Rowtron, Voltmace user I/O [U5], basic Elektor [IC11], Astro Wars CPU [15], Galaxia, Lazarian game, Lazarian sound
74157
74LS157
? Quad 2:1 line selector/multiplexer, non-inverting outputs ETI-640 [IC5,6,19..21], ETI-685 [IC6,9..12], CD2650 [IC27..29], PHUNSY video, Astro Wars CPU [16], Galaxia, Lazarian game
74LS161 ? Synchronous presettable 4-bit binary counter, asynchronous clear Expanded Elektor [IC18], Instructor 50, Astro Wars CPU [18], Galaxia, Lazarian game, Lazarian sound
74163
74LS163
74LS163A
? Synchronous presettable 4-bit binary counter, synchronous clear Elekterminal [IC13], CD2650 [IC50..52,55..58], PHUNSY video, PHUNSY memory
74LS164 ? 8-bit SIPO shift register, asynchronous clear, not output latch Astro Wars CPU [19], Galaxia, Lazarian game
74165
74LS165
? 8-bit PISO shift register, parallel load, complementary outputs Elekterminal [IC12], ETI-640 [IC7]
74166
74LS166
? Parallel-load 8-bit shift register CD2650 [IC60], PHUNSY video, Astro Wars CPU [20], Galaxia, Lazarian game
74174
74LS174
? Hex D flip-flop, common asynchronous clear DS [IC1..4], Elekterminal [IC9], Astro Wars CPU [21], Lazarian game
74LS175 ? Quad D edge-triggered flip-flop, comp. outputs and async. clear ETI-685 [IC8], Instructor 50
74191 ? Synchronous presettable up/down 4-bit binary counter EA LCVDU [IC29,30]
74LS193 ? Synchronous presettable up/down 4-bit binary counter, clear ETI-681 [IC25,26]
74LS221 ? Dual monostable multivibrator ETI-640 [IC3,41]
74LS240 ? ? TWICE cable [U2..5,7..8]
74LS241 ? Octal buffer, non-inverting outputs Expanded Elektor [IC10..11]
74LS243 ? ? Instructor 50
74244
74LS244
L4LS244
? Octal buffer, non-inverting outputs Expanded Elektor [IC1..2], Elektor randomizer [IC3], Instructor 50, PHUNSY interface, PHUNSY video, PHUNSY memory, Astro Wars CPU [22], Galaxia, Lazarian game
74LS245
8T245
? Octal bus transceiver, non-inverting outputs Expanded Elektor [IC3], main PHUNSY, Selbstbaucomputer port unit [IC5], Lazarian game
74LS251 ? 8:1 selector/multiplexer, complementary outputs Interton video summer V1 [IC3,5], Basic Elektor [IC8,38..39]
74LS253 ? ? Instructor 50
74258 ? Quad 2:1 multiplexer (3-state) (keypad inputs) Arcadia [U8]
74LS258
74LS258APC
?
Signetics
Quad 2:1 selector/multipler, inverting outputs Palladium [A7], Interton I/O, Fountain [IC5], Rowtron rev. 0, Voltmace user I/O [U?], basic Elektor [IC12]
74LS260
74S260
? Dual 5-input NOR gate PHUNSY video, Astro Wars CPU [23], Galaxia
74273
74LS273
? 8-bit register, asynchronous clear Instructor 50, P1 (printer port), Main PHUNSY, PHUNSY interface, Selbstbaucomputer port unit [IC4]
74LS283 ? 4-bit binary full adder Lazarian game
74LS365 ? Hex buffer, non-inverting outputs Main PHUNSY, PHUNSY video
74367
74LS367
8097
8T97
? Hex buffer, non-inverting outputs ETI-685 [IC20,35,41], ETI-640 [IC35..37], ETI-681 [IC2,19..22,27], 2650 test socket
74368
74LS368
8098
8T98
? Hex buffer, inverting outputs PC1001 [IC40..42], ETI-640 [IC35..37], ETI-681 [IC2,19..22,27], TWICE cable [U11]
74LS373 ? Octal transparent latch PHUNSY memory, Selbstbaucomputer A/D converter [IC1], Lazarian game
74C374
74LS374
74LS378PC
?
?
Fairchild
Octal tri-state latch Rowtron rev. 0, EA 78up9, PHUNSY video, Selbstbaucomputer A/D converter [IC1], Lazarian game, Lazarian sound
74LS378 ? 6-bit clock enable Interton main board, Fountain [IC8], Voltmace processor/video [U8], Rowtron, expanded Elektor [IC1]
74LS379 ? 4-bit clock enable and complementary outputs PHUNSY video
74S387
SFC 71301E 1-0
? 256*4-bit (128-byte) PROM Elekterminal [IC7]
74LS393 ? Dual 4-bit binary counter, asynchronous clear PHUNSY memory
74S471 ? 256*8-bit (256-byte) PROM Dolphin
74LS514?** ? ? ETI-681 [IC1]
74LS640
74LS640-1
? Octal bus transceiver, inverting outputs Selbstbaucomputer keyboard & display [IC3]
7805
µA7805
LM340T-5.0
?
Signetics
TI
+5V power regulator Arcadia [U13], Palladium [U4..5], Fountain [IC11], Voltmace power supply [U?], Elektor modulator [IC1], , EA 78up5, ETI-636 [IC1], ETI-681 [IC34], Selbstbaucomputer power [IC1]
7812
µA7812
?
Signetics
+12V power regulator Voltmace, ETI-636 [IC2], ETI-685 [IC1]
7905
79L05
? -5V power regulator ETI-685 [IC2], PHUNSY memory, Selbstbaucomputer power [IC2]
7912
79L12
? -12V power regulator ETI-636 [IC3], ETI-685 [IC4]
79G ? Communications controller Elektor power supply [IC1]
8131 ? 128*8-bit (128-byte) SRAM? ETI-685 [IC33,37], ETI-640 [IC34], ETI-681 [IC3,18]
81LS95 ? Octal tri-state buffer EA 78up9
81LS97 ? Octal buffer ETI-685 [IC22..25]
81LS98 ? Octal buffer ETI-685 [IC10]
8250 ? 1 of 8 decoder PC1001 [IC20], Prometheus [IC35]
N82S100 Signetics FPLA (PROM) Lazarian game
82S103 Signetics Bipolar FPGA Instructor 50
82S115 Signetics 512*8-bit (512-byte) PROM Prometheus [IC1..12], TWIN PROM burner [PROM 2], CD2650 (eg. IPL 1.1), P1 [IC13..20,48,49], PHUNSY video
82S123 Signetics 32*8-bit (32-byte) PROM PC1001 [IC35], ETI-685 [IC34], Instructor 50, Main PHUNSY
82S129 Signetics 512*8-bit (512-byte) PROM? PC1001 [IC2..5,11..14] (CK267..274)
82S130 Signetics 256*4-bit (256-byte) PROM? Galaxia
8T15 ? E1A driver (RS232) PC1001 [IC26]
8T16 ? E1A receiver (RS232) PC1001 [IC43]
8T26 ? Quad bus driver/receiver PC1001 [IC1,10,24,25]
8T28 ? ? Prometheus [IC14,23]
899-5 R220/330 Beckman Resistor network TWICE cable [U1,6,9]
9344 Fairchild 4-bit by 2-bit multiplier CD2650 [IC26]
AM25LS2520 ? Octal D-type flip-flop ETI-685 [IC47]
AM9519PC AMD DMA (Direct Memory Access) controller ETI-685 [IC7]
AY-3-8900 General Instrument Standard Television Interface Chip ?
AY-3-8910 General Instrument PSG (Programmable Sound Generator) Expanded Elektor [IC12..13]
AY-5-1013
MM5303
General Instrument
Motorola
UART (Universal Asynchronous Receiver/Transmitter) Elekterminal [IC8]
AY-5-2376 General Instrument Keyboard encoder ETI-670, Elektor KB05
B40C5000 ? Power transistor Elektor power supply [B1]
BC107B
BC547
BC547B
? NPN bipolar transistor Elekterminal [T1], ETI-692 [Q1..3]
BC108
BC548
? NPN bipolar transistor EA 77up2, EA 78up5, ETI-685 [Q1..3], ETI-640 [Q1,3], ETI-681 [Q1], Lazarian game
BC177B
BC557
BC557B
? Audio amplifier Elekterminal [T2], Lazarian sound
BC327 ? PNP bipolar transistor? Selbstbaucomputer display
BC337 ? NPN bipolar transistor PHUNSY interface, Astro Wars CPU [46], Lazarian game
BC517 ? NPN bipolar transistor Basic Elektor [T1]
BC558 ? NPN bipolar transistor ETI-686 [Q1]
BD135
BD137
BD139
? Transistor Elektor power supply [T1]
BD140 ? NPN bipolar transistor ETI-686 [Q2]
BFY90 ? Transistor Elektor modulator [T3]
BF194
BF195
BF254
BF255
BF494
BF495
? Transistor Elektor modulator [T1..2]
BF451 ? NPN bipolar transistor Elekterminal [T3]
BS170 ? Field effect transistor Elektor randomizer [T1]
CA324E RCA NPN transistor array Rowtron rev. 0, Lazarian game
CA3081 ? NPN transistor array Lazarian game
CA3130 ? Operational amplifier CD2650 [IC74]
EM401 ? Silicon diode EA 78up5
HDSP 3531
HP 5082-7611
Hewlett-Packard 7-segment LED display Selbstbaucomputer display
SF.F 96364 Thomson-CSF (Sescosem) CRT (Cathode Ray Tube) Controller (more advanced than EF9364) Elekterminal [IC10]
DUS - Diode, Universal, Silicon* Elekterminal [D1..4]
EF9364 Thomson CRT (Cathode Ray Tube) Controller (less advanced than SF.F 96364) Selbstbaucomputer
LF356
LF357
? Operational amplifier? Selbstbaucomputer A/D converter [IC6,7]
LM309
LM309K
Texas Instruments +5V power regulator ETI LCVDU [REG1], ETI-640 [IC42], Selbstbaucomputer power
LM323K ? ? ETI-685 [IC3]
LM339 Nat. Semi. Quad differential comparator Basic Elektor [IC5], PHUNSY interface
3403 ? Quad operational amplifier? Voltmace A/V [U9A..E]
LM393 ? Differential comparator? Instructor 50
LM3900 ? Quad operational amplifier Astro Wars sound [IC4]
LVM-2A-34 ? ? Arcadia
MCM6574
MCM6674
Motorola Character Generator ETI-640 [IC4], ETI-681 [IC13]
PEIX ? ? Fountain [IC3]
SAA5050 Signetics Teletext Character Generator Malzak
SN76477 Texas Instruments Sound effect generator Malzak, Laser Battle, Lazarian sound
S9014 Signetics? NPN transistor? Voltmace processor/video [Q1,2,5], Voltmace power supply [Q6], Voltmace A/V [Q3..4,7..8,12]
TCA 520B ? Cassette interface Selbstbaucomputer cassette interface [IC1]
TDA 1010
TDA 1010A
? Audio amplifier Astro Wars sound [IC6], Lazarian sound
TEA 1002 Mullard PAL Colour Encoder & Video Summer Interton video summer V2, Voltmace processor/video [U3]
TIL220 ? Red LED ETI-681 [D1]
TIL222 ? Green LED ETI-681 [D2]
TL084 ? Operational amplifier Expanded Elektor [IC33]
TMS2516 Texas Instruments 16,384*8-bit (2K) EEPROM Main PHUNSY
TMS2532 Texas Instruments 32,768*8-bit (4K) EEPROM Voltmace cartridges [U?]
TMS3615 Texas Instruments OMTS (Octave Multiple Tone Synthesizer) Lazarian sound
TMS4045
TMS4045-20
Texas Instruments 1024*4-bit (512-byte) SRAM
1024*4-bit (512-byte) SRAM (200 ns)
Main PHUNSY, PHUNSY video
ULN2003 ? Darlington transistor array? Instructor 50
UM1233 Astec PAL modulator Voltmace A/V
UM1285-8 Astec NTSC VHF modulator Arcadia
ZN425E ? Monolithic 8-bit D-A converter Selbstbaucomputer A/D converter [IC2]

* Eg. BA 127, BA 217, BA 218, BA 221, BA 222, BA 317, BA 318, BAX 13, BAY 61, 1N914, 1N4148.
** Misprint of 74LS541?
Components listed together are not necessarily interchangable drop-in equivalents (eg. speeds, power requirements, etc. may differ).
For most machines, only semiconductors are listed, not capacitors, resistors, etc. Mechanical components and connectors are not listed.

Colours used in table are:

Capacitor
Connector/mechanical (not currently listed)
Diode
Resistor
Transistor
Basic IC
Advanced IC
Miscellaneous

Programming Languages Overview

Name Language Coder/porter Year Size Notes
Assembler Assembler Peter Marschat 198x 2K ($1000..$17FF) -
2650 Line Assembler Assembler ? 19xx 1,332 bytes ($15CC..$1AFF) -
Assembler Assembler Applied Technology (David Curtis) 197x 2½K ($1200..$1BFF) -
PIP Line Assembler (PIPLA) Assembler Signetics 1979 1K ($400..$7FF) PIPBUG 2 is $0..$3FF
Prometheus Assembler Signetics 1977 5½K ($2200..$37FF) -
2650 Micro BASIC BASIC Alan Peek 1978-1979 ? -
MicroWorld BASIC BASIC Applied Technology (Ian Binnie & Martin Hood) 1979 ? -
TCT BASIC BASIC TCT Micro Design 19xx ? -
BASIC BASIC MicroByte (Ian Binnie & Martin Hood) 19xx 6K Undumped
FORTH FORTH MicroByte (Ian Binnie & Martin Hood) 1982 ~8K Undumped
TWIN [unrelocatable] assembler Assembler Signetics 1976 ? -
TWIN relocatable assembler Assembler Signetics 1979 ? -
BASIC BASIC Signetics 1982 8K GN007
Pascal Pascal Signetics 1982 ? GN007
Editor/Assembler Assembler Central Data? 19xx 5¼K ($2000..$34FF) -
"8K" BASIC BASIC Central Data 1978 6,271 bytes ($2781..$3FFF) Editor is $2000..$2780
"12K" BASIC BASIC Central Data 1978 15,010 bytes ($2000..$5AA1) Including editor
FORTH FORTH D. P. Hildyard 1981 ? -
2650 Assembler (PASS) Assembler ? 19xx ? -
QASS Assembler? ? 19xx ? -
FORTH FORTH Frank Philipse? 19xx ? Converted from CD2650 to PHUNSY?
MicroWorld BASIC BASIC Frank Philipse 19xx-2010 ? Converted from PIPBUG to PHUNSY
[Unrelocatable] Cross-Assembler Assembler Signetics 197x ? Written in FORTRAN. Ran on PDP-11/40 (NCSS & GE Mark III timeshares). Undumped.
Relocatable [Cross-]Assembler Assembler Signetics April 1977 ? Written in FORTRAN. Ran on PDP-11/40 (NCSS & GE Mark III timeshares). Undumped.
PLµS PL/M superset Signetics (Gary Kildall) 1978 ? Cross-compiler. Written in FORTRAN. Ran on NCSS timeshare and (other) "16- and 32-bit machines". Undumped.

Disassemblers are not listed.
MicroWorld (and later Microbee and Honeysoft) are variant names of Applied Technology.
Ian Binne & Martin Hood wrote MicroWorld BASIC for Applied Technology but would later form MicroByte.

File Formats Overview

A u t o s e n s e Extn. Meaning Description Loaded from Run from Efficiency
BIN Binary Headerless raw binary.
Represents a ROM cartridge.
Represents a partial RAM image (loaded from tape).
Always $0 Always $0 Very good
TVC TV (Television) Games Computer Ami/Droid/WinElektor-only format. Represents a partial RAM image (loaded from tape). Yes Yes Very good
EOF Elektor TVGC Object Format Native on-tape file format for Elektor TVGC (and Hobby Module). Similar to AOF. Yes Yes OK
8SVX IFF 8-bit Sampled Vox (Voice) Entire (side of) analog (audio) tape. Yes Yes Extremely poor
AIFF Audio Interchange File Format Entire (side of) analog (audio) tape. Yes Yes Extremely poor
WAV RIFF (Rip-off of IFF) Waveform Entire (side of) analog (audio) tape. Yes Yes Extremely poor
PAP Papertape Headerless raw binary. Represents an entire roll of papertape.
(Note: MIKIT papertape is not yet supported in Ami/WinArcadia, as of V34.3.)
No/Yes* No/Yes* Very good/OK*
AOF Signetics Absolute Object Format Native on-tape (audio cassette tape and papertape) file format for SI50/PIPBUG/BINBUG/CD2650, also used on TWIN. Similar to EOF. Yes Yes OK
CMD Command Native on-disk file format for BINBUG-based machines. Yes Yes Good
RAW Raw disk image Entire (side of) BINBUG or CD2650 floppy disk (5¼"), raw. n/a n/a Very good
MOD Module Native on-disk file format for TWIN. Yes Yes Good
TWIN Test Ware Instrument disk image Entire (side of) TWIN floppy disk (8"), with sector headers. n/a n/a Good
IMG Raw disk image Entire (side of) TWIN floppy disk (8"), raw. n/a n/a Very good
SMS "ASCII-Hex SMS" For PROM burners. Probably invented by SMS Microcomputer Systems .
TWIN can load/save this format, but its own built-in PROM burner does not require it (instead it just reads from a user-specified region of slave RAM).
Always $0 Always $0 Poor
IMAG Image Native on-disk file format for CD2650. Yes Yes Good
MDCR Mini Digital Cassette Recorder Entire digital tape. Yes Yes Good
BPNF Begin Plus Negative Finish For PROM burners. No No Very poor
COS Common saved state Ami/Droid/WinArcadia-only format. Represents a complete machine state. Always $0 Yes Good
COR Common recording Ami/WinArcadia-only format. Represents a complete machine state and subsequent user input. Always $0 Yes Good
HEX Intel hexadecimal object format Roughly similar to AOF, though without game start address feature. Yes No OK
ASM Assembly language 2650 CPU assembly language source code (in ASCII). Yes No Poor
SYM Symbol table Symbol table, ie. label definitions (in ASCII). No effect on guest. No No n/a

A yellow background behind the machine glyph means autosense is supported by the emulator for that machine and file format combination. These are the recommended file formats for everyday use:
BIN for Arcadia/Interton/SI50/PHUNSY;
TVC for Elektor; and
AOF for PIPBUG/BINBUG/CD2650/Selbstbaucomputer/MIKIT.
Plus the floppy disk formats (IMG/TWIN/RAW) when using disk-based software (ie. any of the DOSes).
COS and COR files can be used for any purpose as desired; they are the most powerful and flexible of all formats.
Use of the tape formats (8SVX/AIFF/WAV/MDCR) should normally only be needed when dumping tapes.
Use of the PROM burner formats (BPNF/SMS) should never be needed unless you actually have, and want to use, an old PROM burner that expects its data in one of these formats.
PAP papertape format can be useful for easily giving input to or saving output from the guest via a file.
There is not much necessity to use EOF format but you can do so if you want. If it mostly equivalent to TVC except it is less efficient, has checksums, and has a file ID ($0..$F range) (and is not supported for autosensing).
Use of the on-disk formats (CMD/MOD/IMAG) should not normally be needed; usually it is more convenient to just use the disk (IMG/TWIN/RAW) containing the program.
Any of the file formats can be used inside a ZIP archive if desired.
Note that AOF/ASM/BIN/HEX/SYM/etc. files can be force-loaded/saved to/from practically any guest using the debugger (even where blank in the table above).
"Loaded from" of "yes" means the file format contains start and end addresses for where it should be loaded.
"Run from" of "yes" means the file format can contain a game start address for where it should begin execution from.
Efficiency is in terms of storage space, as a means of storing games for emulator users. In case your host machine is down to its last terabyte ;-) .
*: The 1st value is inherent. The 2nd value assumes an AOF is stored on it.

Signetics AOF (Absolute Object Format)

Each block is as follows:

Offset(s) Description
0 colon (:) ($3A)
1..2 load address (big-endian)
3 block length:
0 = last block
1..255 = 2..256 bytes (respectively)
4 checksum for header bytes 0..3
5..n-1 data (ASCII-encoded hex, each character representing 1 nybble)
n checksum for data

Files are normally terminated by a zero-length block. The load address of this block is used as the start address of the game.
Checksums start as $00. For each emitted byte, the following algorithm is applied:

SUMC ^= data;
SUMC <<= 1;

Eg. the following program:

$1600: C0 C0 C0 C0

would be encoded as follows:

3A 16 00 03 15 (1st block header)
C0 C0 C0 C0 88 (1st block data)
3A 00 00 00 A3 (2nd block header)

For the 1st header:

SUMC = 0; // SUMC is %00000000 [$00];
SUMC ^= $3A; // SUMC is %00111010 [$3A];
SUMC <<= 1; // SUMC is %01110100 [$74];
SUMC ^= $16; // SUMC is %01100010 [$62];
SUMC <<= 1; // SUMC is %11000100 [$C4];
SUMC ^= $00; // SUMC is %11000100 [$C4];
SUMC <<= 1; // SUMC is %10001001 [$89];
SUMC ^= $03; // SUMC is %10001010 [$8A];
SUMC <<= 1; // SUMC is %00010101 [$15];

For the 1st data:

SUMC = 0; // SUMC is %00000000 [$00];
SUMC ^= $C0; // SUMC is %11000000 [$C0];
SUMC <<= 1; // SUMC is %10000001 [$81];
SUMC ^= $C0; // SUMC is %01000001 [$41];
SUMC <<= 1; // SUMC is %10000010 [$82];
SUMC ^= $C0; // SUMC is %01000010 [$42];
SUMC <<= 1; // SUMC is %10000100 [$84];
SUMC ^= $C0; // SUMC is %01000100 [$44];
SUMC <<= 1; // SUMC is %10001000 [$88];

For the 2nd header:

SUMC = 0; // SUMC is %00000000 [$00];
SUMC ^= $3A; // SUMC is %00111010 [$3A];
SUMC <<= 1; // SUMC is %01110100 [$74];
SUMC ^= $00; // SUMC is %01110100 [$74];
SUMC <<= 1; // SUMC is %11101000 [$E8];
SUMC ^= $00; // SUMC is %11101000 [$E8];
SUMC <<= 1; // SUMC is %11010001 [$D1];
SUMC ^= $00; // SUMC is %11010001 [$D1];
SUMC <<= 1; // SUMC is %10100011 [$A3];

Go back to