
SIGRET101
2650
MICROPROCESSOR

CONTENTS

I 	INTRODUCTION

INTRODUCING THE 2650 FAMILY 	 3

FEATURES OF THE 2650 FAMILY 	 4

Family Approach 	 4

Microprocessor Features 	4

Compatible Products 	 5

PROCESSOR HARDWARE DESCRIPTION. 	 6

Architecture 	6

Interfacing 	 8

Instruction Set 	 12

SUPPORT 	 15

Documentation 	 15

Software Support 	 15

Prototyping Hardware 	 16

System Compatible Families 	 16

II 	2650 HARDWARE

INTRODUCTION 	 19

General Features 	 18

Applications 	 20

INTERNAL ORGANIZATION 	 21

Internal Registers 	 21

Program Status Word 	 22

Memory Organization 	 27

INTERFACE 	 29

Signals 	 29

Signal Timing 	 34

Electrical Characteristics 	 37

Interface Signals 	 39

Pin Configuration 	 39

FEATURES 	 41

Input/Output Facilities 	 41

Interrupt Mechanism 	 43

Subroutine Linkage 	 45

Condition Code Usage 	 45

Start-up Procedure 	 46

INSTRUCTIONS 	 47

Addressing Modes 	 47

Instruction Formats 	 51
Detailed Processor Instructions 	 52

III 	2650 ASSEMBLER LANGUAGE

INTRODUCTION 	 93

LANGUAGE ELEMENTS 	 97

Characters 	 97

Symbols 	 97

Constants 	 97

Multiple Constant Specifications 	 99

Expressions 	 99

Special Operators 	 100

SYNTAX 	 101

Fields 	 101

Symbols 	 102

Symbolic References 	 102

Symbolic Addressing 	 102

PROCESSOR INSTRUCTIONS 	 105

DIRECTIVES TO THE 2650 ASSEMBLER 	 106

THE ASSEMBLY PROCESS 	 115

Assembly Listing 	 118

IV 	2650 SIMULATOR

	

INTRODUCTION 123

SIMULATOR OPERATION 	 124

General 	 124

Simulated Processor State 	 124

Simulated Memory 	 125

Simulated Input/Output Instructions 	 125

USER COMMANDS 	 126

General 	 126

Command Formats 	 127

Command Descriptions 	 130

SIMULATOR DISPLAY (LISTING) 	 139

V APPENDIXES

APPENDIX A

APPENDIX B

APPENDIX C
APPENDIX D

APPENDIX E
APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

APPENDIX L
APPENDIX M

APPENDIX N

MEMORY INTERFACE EXAMPLE 	 147

I/O INTERFACE EXAMPLE 	 148

INSTRUCTIONS, ADDITIONAL INFORMATION 	 149

INSTRUCTION SUMMARY 	 151

SUMMARY OF 2650 INSTRUCTION MNEMONICS . . 	160
NOTES ABOUT THE 2650 PROCESSOR 	 162
ASCII AND EBCDIC CODES 	 163
COMPLETE ASCII CHARACTER SET 	 164
POWERS OF TWO TABLE 	 165
HEXADECIMAL-DECIMAL CONVERSION TABLES . 	166
COMMAND SUMMARY 	 171

ERROR MESSAGES 	 172
SIMULATOR RESTRICTIONS 	 174
SIMULATOR RUN PREPARATION 	 174

Copyright 1975—Printed in USA. Signetics Corporation reserves the right to make changes in the
products described in this book in order to improve design or performance. Signetics Corporation
assumes no responsibility for the use of any circuits described herein and makes no representations
that they are free from patent infringement.

CHAPTER I

INTRODUCTION

•) e..

INTRODUCING THE 2650 FAMILY
"5—VOLT SYSTEM REDUCES SYSTEM COSTS"

"2650 PUTS THE INTERFACE ON THE CH1P...NOT ON THE CIRCUIT BOARD"
"POWERFUL INSTRUCTION SET PROVIDES LOWER COST SYSTEMS"

The greatly increased sophistication and rising production costs of today's
logic systems force the system designer to use every available resource in
order to economically produce his system. In keeping with this cost reduc-
tion goal, Signetics has developed a powerful general purpose integrated
microprocessor called the 2650. The first Signetics microprocessor, in con-
junction with Signetics MOS and Bipolar memory and interface product
lines, offers the system designer a viable and attractive alternative to the
hard-wired approach to system design. For many applications, the system
designer can use this general purpose microprocessor and standard memory
and interface circuits to implement systems with lower cost than the hard-
wired logic approach without sacrificing performance.

By using the 2650 and compatible products, the system designer can
obtain two other major benefits of microcomputer systems. These benefits
are greatly enhanced system flexibility and minimized design or modification
cycles compared with the hard-wired logic approach.

The requirements of the majority of applications for integrated micro-
processors (logic replacement and control functions) have defined a general
set of processor parameters based on system and device economies, ease of
use, and speed requirements.

These characteristics include:

• Single chip 	 • Eight bit parallel structure
• Fixed instruction set 	 • TTL compatibility

In addition to these characteristics, the design of the 2650 has been
optimized around three generalized objectives:

• Lowest system cost 	 • Capable of a wide range
• Ease of use 	 of applications

The optimum technology choice for implementing these features is the
low threshold ion-implanted N-Channel silicon gate process. This process
has matured in the past few years, providing a combination of high density,
low threshold voltage, moderate speed and good manufacturing yields. Using
this technology, a total of 576 bits of ROM, approximately 250 bits of
register and about 900 logic gates are used to implement the processor
function on the 2650 chip.

The instruction set consists of 75 instructions, of which about 40% con-
sists of arithmetic instructions. This class contains the Boolean, arithmetic,
and compare operations, each of which may be executed using any one of
eight addressing modes. Another 30% of the instruction set consists of
branch instructions which incorporate six addressing modes. The remaining
30% of the instruction set includes, amoung others, I/O instructions, instruc-
tions for performing operations on the two status registers, a decimal adjust
instruction and the HALT instruction.

Utilizing multiple addressing modes greatly increases coding efficiency,
allowing functions to be performed using fewer instructions than less power-
ful machines. The resulting reduction in routine execution time and memory
capacity requirements directly translates into improved system performance
and reduced memory cost. In this way the powerful instruction set and
addressing modes of the 2650 allow a significant reduction in the memory
required to perform a given function, resulting in sizeable system cost savings
without sacrificing performance.

3

FEATURES OF THE 2650 FAMILY

2650 FAMILY APPROACH

• Low System Cost
— Low cost N-Channel products
— Intrinsic advantages of single 5V supply
— Uses standard low cost memories
— Low cost interfacing

• Ease of Use
— Easy interfacing
— Conventional instruction set
— Ease of programming

• Wide Range of Applications
— General purpose capability
— Powerful architecture
— Powerful instruction set
— Flexible
— Expanding family of devices

FEATURES OF THE MICROPROCESSOR

Basic 2650 Processor Characteristics

• Single chip 8-bit processor
• Signetics low threshold double ion-implanted

silicon gate N-Channel technology
• Single +5V power supply
• Low power consumption: 525 mW maximum
• Single phase TTL-compatible clock
• Static operation: no minimum clock frequency
a Clock frequency: 1.25MHz maximum
• Cycle time: 2.4las minimum
• Standard 40 pin DIP

2650 Interfaces

* TTL compatible inputs, outputs — no external
resistors required

• Tri-state bus outputs for multiprocessor and
direct memory access systems
Asynchronous (handshaking) memory and I/O
interface

• Accepts wide range of memory timing
• Interfaces directly with industry standard mem-

ories
• Powerful control interface
* Single-bit direct serial I/O path

Parallel 8-bit I/O capability

2650 Processor Architecture

• 8-bit bidirectional tri-state data bus
• Separate tri-state address bus
a 32,768-byte addressing range
• Internal 8-bit parallel structure
• Seven 8-bit addressable general purpose registers
• Eight-level on-chip subroutine return address

stack
• Program status word for flexibility and enhanced

processing power
• Single-level hardware vectored interrupt cap-

ability
• Interrupt service routines may be located any-

where in addressable memory
• Separate adder for fast address calculation

2650 Instruction Set

• General purpose instruction set with substantial
capabilities in arithmetic, character manipulation
and control and I/O processing

• Fixed instruction set
• 75 instructions
• Up to eight addressing modes
• True indexing with optional auto increment/

decrement
• One, two or three byte instructions
• One- and two-byte I/O instructions
• Selective test of individual bits
• Powerful instruction set and addressing modes

minimize memory requirements

FEATURES OF COMPATIBLE PRODUCTS

2602, 2606, 1K RAMs

k Completely static operation
* N-Channel silicon gate technology
• 1024 X 1 organization (2602)

256 X 4 organization (2606)
Single +5V power supply

• 200mW typical power dissipation
* Maximum access time:

1,us 	: 2602
750ns : 2606
650ns : 2602-2
500ns : 2602-1, 2606-1

• TTL-compatible
• Tri-state outputs
• Data I/O bus (2606 only)
• Standard 16 pin DIP

2608 8K ROM

• Completely static operation
• N-Channel silicon gate technology
• 1024 X 8 organization
• Single +5V power supply
• 400mW maximum power dissipation
• 650ns maximum access time
• TTL compatible
• Tri-state outputs
• Standard 24 pin DIP

8T26 Quad Transceiver
• Schottky TTL technology
• Four pairs of bus drivers/receivers
• Separate drive and receive enable lines
• Tri-state outputs
• Low current pnp inputs
ra High fan out — driver sinks 40mA
* 2Ons maximum propagation delay
• Standard 16 pin DIP

8T31 8-bit Bidirectional Port

• Schottky TTL technology
• Two independent bidirectional busses
• Eight bit latch register
• Independent read, write controls for each bus
• Bus A overrides if a write conflict occurs
• Register can be addressed as a memory location

via Bus B Master Enable
• 3Ons maximum propagation delay
• Low input current: 500,uA
• High fan out — sinks 20mA
• Standard 24 pin DIP

8T95/6/7/8 Hex Buffers/Inverters

• Schottky TTL technology
• Six buffers or inverters per package
• Non-inverting (8T95, 8T97) or

Inverting (8T96, 8T98)
• Buffered control lines
• Tri-state outputs
• Low current pnp inputs
• Standard 16 pin DIP

82S115/123/129 PROMs

• Schottky TTL technology
• Single +5V power supply
• 32 X 8 organization (82S123)
• 256 X 4 organization (82S129)
• 512 X 8 organization (82S115)
• Field programmable (Nichrome)
• On-chip storage latches (82S115 only)
• Low current pnp inputs
• Tri-state outputs
• 35ns typical access time
+ Standard 24 pin DIP (82S115)
* Standard 16 pin DIP (82S123, 82S129)
(See Appendix for additional products and data
sheets.)

5

PROCESSOR HARDWARE DESCRIPTION

ARCHITECTURE

GENERAL DESCRIPTION

A block diagram of the processor is shown in Figure 1. The first, second,
and third bytes of instructions are read into the processor on the data bus
and loaded into the Instruction Register, Holding Register, and Data Bus
Register, respectively. The instructions are decoded through a combination
of ROM and random logic.

The ALU performs arithmetic, Boolean, and combinatorial shifting func-
tions. It operates on eight bits in parallel and utilizes carry-look-ahead logic.
A second adder is used to increment the instruction address register and to
calculate operand addresses for the indexed and relative addressing modes.
This separate address adder allows complex addressing modes to be imple-
mented with no increase in instruction execution time.

The General Purpose Register Stack and the Subroutine Return Address
Stack are implemented with static RAM cells. The Register Stack consists
of seven 8-bit registers. The Subroutine Stack can contain eight 15-bit
addresses, thereby allowing eight levels of subroutine nesting. Placing the
Subroutine Stack on the chip allows efficient ROM-only systems to be
implemented in some applications. Separate 15-bit Instruction Address and
Operand Address Registers and provided. The 2650 is an 8-bit binary pro-
cessor with BCD capability. See Figure 2 for a diagram of the 2650 registers
as seen by the programmer.
PROGRAM STATUS WORD

The Program Status Word (PSW) is a major feature of the 2650 with
greatly increases its flexibility and processing power. The PSW is a special
purpose register within the processor that contains status and control bits.

It is divided into two bytes called the Program Status Upper (PSU) and
Program Status Lower (PSL). The PSW bits may be tested, loaded, stored,
preset, or cleared using the instructions which affect the PSW. The bits are
utilized as follows:

PSUO, 1,2 — SP 	Pointer for the Return Address Stack.
PSU5 	— II 	Used to Inhibit recognition of additional Interrupts.
PSU6 	— F 	Flag is a latch directly driving the flag output.
PSU7 	— S 	Sense equals the state of the sense input.
PSLO 	— C 	Carry stores any carry from the high-order bit of

the ALU.
PSL1 	— COM — Compare determines if a logical or arithmetic com-

parison is to be made.
PSL2 	— OV F 	Overflow is set if a two's complement overflow

OMITS.

PSL3 	— WC 	With Carry determines is the carry is used in arith-
metic and rotate instructions.

PSL4 	— RS 	Register Select identifies which bank of 3 GP regis-
ters is being used.

PSL5 	— IDC 	Inter Digit Carry stores the bit-3-to-bit-4 carry in
arithmetic operations.

PSL6, 7 — CC 	Condition Code is affected by compare, test and
arithmetic instructions.

INTERRUPT HANDLING CAPABILITY

The 2650 has a single level hardware vectored interrupt capability. When
an interrupt occurs, the 2650 finishes the current instruction and sets the

PSU

STACK POINTER
UN USE
INTERRUPT INHIBIT

FLAG

SENSE

PSL

LOGICAL/ARITH COMPARE

OVERFLOW BIT

WITH/WITHOUT CARRY

REGISTER BANK SELECT

INTERDIGIT CARRY

CONDITION CODE

7

REG 3'

REG 2'

REG 1'

REG

REG 2

REG 1

REG 0

7

CC1 CC, IOC

SUBROUTINE RETURN ADDRESS STACK 18 x 15 RAMI

SP 2 SP1 SP,

O

RS WC OVF COM C

Interrupt Inhibit bit in the PSV. The processor then executes a Branch to
Subroutine Relative to location Zero (ZBSR) instruction and sends out
Interrupt Acknowledge and Operation Request signals. On receipt of the
INTACK signal the interrupting device inputs an 8-bit address, the interrupt
vector, on the data bus. The relative and relative indirect addressing modes
combined with this 8-bit address allow interrupt service routines to begin at
any addressable memory location.

SUBROUTINE RETURN
ADDRESS STACK sr—

O
REGISTER

STACK

I 	RO,

PROGRAM
STATUS

WORD

	N,

ADDRESS
BUS

	J

INSTRUCTION ADDRESS REGISTER

ALU

MULTIPLEXER

—V 	

CONDITION CODE
AND

BRANCH LOGIC

OPERAND ADDRESS REGISTER

(44=:)DATA BUS

ADDRESS ADDER

4

4

'HOLDING REGISTER! 	
r

INSTRUCTION
REGISTER

INTERRUPT
REQUEST 	

INTERRUPT
LOGIC

INTERRUPT 	
ACKNOWLEDGE

I/O
CONTROL LINES

I/O
LOGIC

14-1\
DECODING AND CONTROL LOGIC TIMING LOGIC

4- CLOCK

Figure 1. BLOCK DIAGRAM

14
	

7
	

7

GENERAL PURPOSE REGISTERS 	 PROGRAM STATUS WORD

14 	13 	12

PAGE CONTROL

INSTRUCTION ADDRESS REGISTER

NOTE: Not all internal registers are shown.

Figure 2. MAJOR 2650 REGISTERS

7

INTERFACING

INTRODUCTION TO INTERFACING WITH THE 2650

Five key concepts have been incorporated in the 2650 to make interfacing
easy and inexpensive. The extent to which these concepts have been incor-
porated in the Signetics 2650 provides unique benefits of system density and
low cost to the system designer.

1. SINGLE 5V POWER SUPPLY

Low threshold double ion-implanted Silicon Gate N-Channel MOS tech-
nology is used to allow operation from one +5V power supply with resultant
cost savings and improved reliability. This reduces power consumption signi-
ficantly compared with the multi-power supply approach.

2. INTERFACE CIRCUIT COMPATIBILITY

The 2650 inputs and outputs are specified to be compatible with widely
available, standard, low cost logic families such as TTL, CMOS and Low-
power STTL. This includes the single phase clock input which saves the cost
of high level multiphase clock driver circuitry. Bus outputs are tri-state and
capable of driving one 7400 TTL load or four 74LS loads. The 2650 is cap-
able of driving several loads of pnp-buffered STTL inputs. Many MSI, Inter-
face and Memory LSI circuits (for example, in Signetics 82S00 and 8T00
series) have these low current pnp inputs and are recommended for use in
2650 microcomputer systems. See Table 1 for DC characteristics of the 2650.

3. USE OF STANDARD MEMORIES

One of the major 2650 design achievements is to operate efficiently in a
system using industry standard memories, for example 1024 X 1 and 256 X 4
N-channel RAlVls and 1024 X 8 N-Channel ROMs. These standard memories
are widely available and used in volume with corresponding low cost. Non-
standard memories, particularly those produced by only one manufacturer
will be less available, run in lower volume and often cost 2 to 3 times as
much per bit as industry standard products. The 2650 operates successfully
with memories of any access time, due to the completely asynchronous
interface that is provided for this purpose. Memories which respond in less
than 0.8 microseconds allow the processor to operate at maximum speed.

4. NO SPECIAL INTERFACE PRODUCTS

Similarly, another major achievement is to operate efficiently in a system
using no special I/O products. This approach avoids the problems of a
system requiring high cost specialized components with restricted avail-
ability.

TABLE 1. PRELIMINARY 2650 DC ELECTRICAL CHARACTERISTICS

LIMITS

SYMBOL PARAMETER TEST CONDITIONS MIN MAX UNIT

ILI Input Load Current VIN = 0 to 5.25V 10 MA

ILOH Output Leakage Current ADREN, DBUSEN = 2.2V, VOUT = 4V 10 i.i.A

ILOL Output Leakage Current ADREN, DBUSEN = 2.2V, VOUT = 0.45V 10 µA

ICC Power Supply Current VCC = 5.25V, TA = Ot 100 mA

VIL Input Low -0.6 0.8 V

VIH Input High 2.2 VCC V

VOL Output Low IOL = 1.6 mA 0.0 0.45 V

VOH Output High 10H = -100 MA 2.4 VCC-0.5 V

CIN Input Capacitance VIN = OV 10 pF

COUT Output Capacitance VOUT = OV 10 pF

Conditions: TA = 0°C to 70°C, VCC = 5V ±5%

8

5. POWERFUL MEMORY AND I/O INTERFACE

The following features characterize the memory and I/O interfaces:
• Both memory and input/output may operate in a completely asynchronous

fashion. Consequently, devices operating at any speed up to the maximum
data transfer rate may be connected without buffering. External latching
of data from these interfaces is not required.

• Data paths are driven with tri-state buffers, allowing multiprocessor and
Direct Memory Access (DMA) configurations to be designed.

• Eight-bit data paths communicate data in parallel.
• One- and two-byte I/O instructions provide maximum flexibility and

efficiency when interfacing with I/O devices.

SENSE

ADR12

ADR11

ADR 10

ADR9

ADR8

ADR7

ADR6

ADR5

ADR4

ADR3

ADR2

ADR1

ADRO

ADREN

RESET

INTREQ

ADR14-D/E

ADR13-E/A

MI/10

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

FLAG

SCC

CLOCK

PAUSE

OPACK

RUN/WAIT

INTACK

DBUSO

DBUS1

DBUS2

DBUS3

DBUS4

DBUS 5

DBUS6

DBUS7

DBUSEN

OPREQ

h/W

WRP

GND

Figure 3. PIN CONFIGURATION

PIN CONFIGURATION AND INTERFACE SIGNAL DEFINITION

Refer to Figure 3 for the 2650 pin configuration. Signals are defined as
follows:
ADRO-ADR12 	The low order 13 bits of address for memory access are

on these pins. ADRO-ADR7 are also used in two-byte I/O
instructions. These outputs are tri-state buffers con-
trolled by ADREN.

ADR13-E/NE — This multiplexed output signal delivers the ADR13
address bit when M/IO is in the M phase or discriminates
between Extended and Non-Extended I/O instructions
when M/IO is in the I/O phase.

ADR14-DJC 	Address 14 or Data/Control is a multiplexed output
signal. This pin delivers the ADR14 address bit when
M/IO is in the M phase or discriminates between Data
and Control I/O instructions when M/IO is in the I/O
phase.

ADREN 	Address Bus Enable is an input providing the external
control for the ADRO-ADR12 tri-state buffer drivers.

DBUSO-DBUS7 	This is the 8-bit, bidirectional tri-state bus over which
most data is communicated into or out of the processor.

DBUSEN 	Data Bus Enable is an input that controls the tri-state
buffer drivers for DBUSO to DBUS7.

OPREQ 	Operation Request is an output signal that informs
external devices that the information on other output
pins is valid.

9

OPACK 	— Operation Acknowledge is an input which is used by
external devices to end an I/O or memory signaling
sequence.

M/IO 	— Memory/Input-Output. This output informs external
devices whether Memory or Input/Output functions are
being performed.

R/W 	— This output signal describes an I/O or memory operation
as Read or Write, and defines whether the bidirectional
DBUS is transmitting or receiving.

WRP 	— This Write Pulse is generated during write sequences and
may be used to strobe memory or I/O devices.

SENSE 	— Is an input, independent of the other I/O signals, that
provides a direct input to the processor.

FLAG 	— This pin provides a direct output signal that is completely
independent of the other I/O signals.

INTREQ 	— Interrupt Request. This input is used by external devices
to force the processor into the Interrupt sequence.

INT AC K 	— Interrupt Acknowledge is the signal used by the pro-
cessor to inform external devices that it has entered an
interrupt sequence.

PAUSE 	— Pause is used to temporarily stop the processor at the end
of the current instruction. It may stop processing for an
indefinite length of time and is available to use for DMA
(Direct Memory Access).

RUN/WAIT 	— Informs external circuits as to the Run/Wait status of the
2650 processor.

RESET 	— Is an input used to cause the 2650 to begin processing
from a known state.

CLOCK 	— This is the only clock input to the processor. It accepts
standard TTL levels.

VCC 	— +5V power.
GND 	— The logic and power supply ground for the processor.

2650 TIMING

The clock input to the 2650 provides the basic timing information that
the processor uses for all its internal and external operations. The clock rate
determines the instruction execution time, except to the extent that external
memories and devices slow the processor down. The maximum clock rate of
the standard 2650 is 1.25 Megacycles (one clock period is 800ns minimum).
One unique feature of the 2650 is that the clock frequency may be slowed
down to DC, allowing complete timing flexibility for interfacing. This feature
permits single stepping the clock which can greatly simplify system check-
out. It also provides an easy method to halt the processor. Each 2650 cycle
is comprised of three clock periods. Direct instructions require either 2, 3, or
4 processor cycles for execution and, therefore, vary from 4.8 to 9.6p s in
duration.

A timing diagram for a memory read cycle is shown in Figure 4. OPREQ
(Operation Request) is the master control signal that coordinates all opera-
tions external to the processor. When true, OPREQ indicates that other
output signals are valid. During a memory read cycle M/IO is in the M
(Memory) state and R/W is in the R (Read) state. The address lines and the
control lines become valid before OPREQ rises. The data to be read may
be returned anytime after OPREQ becomes valid. An OPACK (Operation
Acknowledge) should accompany the read data from the memory. The
Data and OPACK signals should remain valid for 50 ns after OPREQ falls.

10

DELA

ADDRESSES VALID

60015 AT

2 AoS CYCLE

ALLOWABLE MEMORY

OPAL

2650 CYCLE TIME

e3 CLOCK PERIODS 2.44 MINIMUM

NTERNAL NT ERN L

DELAY `5008S

CONTROL OUTPUTS AND

ADRO-AD1114

READAVRITE

FROM ACCESSED
MEMORY

-- h

CLOCK

2650 OUTPUTS

OPREO

INPUT/OUTPUT INTERFACE

The 2650 microprocessor has a set of versatile I/O instructions and can
perform I/O operations in a variety of ways. One- and two-byte I/O instruc-
tions are provided, as well as a special single-bit I/O facility. The I/O modes
provided by the 2650 are designated as Data, Control, and Extended I/O.

Data or Control I/O instructions are one byte long. Any general purpose
register can be used as the source or destination. A special control line
indicates if either a Data or Control instruction is being executed. Extended
I/O is a two-byte read or write instruction. Execution of an extended I/O
instruction will cause an 8-bit address, taken from the second byte of the
instruction, to be placed on the low order eight address lines. The data,
which can originate or terminate with any general purpose register, is placed
on the data bus. This type of I/O can be used to simultaneously select a
device and send data to it.

Memory reference instructions that address data outside of physical
memory may also be used for I/O operations. When an instruction is exe-
cuted, the address may be decoded by the I/O device rather than memory.

MEMORY INTERFACE

The memory interface consists of the address bus, the 8-bit data bus and
several signals that operate in an interlocked or handshaking mode.

The Write Pulse signal is designed to be used as a memory strobe signal for
any memory type. It has been particularly optimized to be used as the Chip
Enable or Read/Write signal for the Signetics 2602 and 2606 RAMs.

INTERFACING - A MINIMAL SYSTEM EXAMPLE

The 2650 has been designed for low cost, easy interfacing, which is
dramatically illustrated by a minimal system configuration shown in Figure 5.
This system has a Teletype interface, 1024 bytes of ROM, and 256 bytes of
RAM, yet requires only seven (7) standard integrated circuit packages. The
ROM can contain a bootstrap loader and I/O driver programs for the Tele-
type. Other programs could reside in ROM or be read into RAM via the
Teletype. An alternative to the 2608 N-Channel MOS ROM is the 82S115
Bipolar PROM which offers a 512 X 8 organization. Only one +5-volt power
supply is required for this system. The advantages of conceptual simplicity
and minimum system costs of the 2650 approach will be obvious to the
system designer, particularly when compared to alternative microprocessor
products.

NOTES APACE ust m 	go low at least 1001E before the trailing 1461 of T2 in order not to slow non the 2650.

•2: DA, IN op, .me et be Nee or 5016 after the va gedne 0165C.

SENSE

FLAG

2650
WRP

OPACK

OPRECi

010

AO-A9

VCE GND 	 CLOCK

TTY

UNIT

DATA BUS
De-DT 	

RIw

2606
AM

CE

PATi

2606

256 X4 RAM

CE

2608

1024 X 8 ROM

GS

RAY 	
7439

-E>
7439

ADDRESS BUS

NOTES.

1 	ONE -5V SUPPLY' SEVEN IC PACKAGES

2 	'CMOS RECEIVER USED FOR HIGH NOISE IMMUNITY.
74123

41"/1/1.-0 +5

Figure 4. MEMORY READ CYCLE TIMING 	Figure 5. SEVEN PACKAGE MINIMAL SYSTEM

11

LU
CC

0
-J

W
2

x oc

CC

0
CJ

cc

12

INSTRUCTION SET

It may be seen from examination of the 2650 instruction set that there
are many powerful instructions which are all easily understood and are
typical of larger computers. There are one-, two-, and three-byte instruc-
tions as a result of the multiplicity of addressing modes. See Table 2 for a
complete listing and Figure 6 for instruction formats.

Automatic incrementing or decrementing of an index register is available
in the arithmetic indexed instructions. All of the branch instructions except
indexed branching can be conditional.

Register-to-register instructions are one byte; register-to-storage instruc-
tions are two or three bytes long. The two-byte register-to-memory instruc-
tions are either immediate or relative addressing types.

TABLE 2. INSTRUCTION SET

MNEMONIC OP CODE FORMAT* DESCRIPTION OF OPERATION AFFECTS CYCLES

LOD

STA

Z
I
R
A

Z
R
A

000 000
000 001
000 010
000 011

110 000
110 010
110 011

1Z
21
2R
3A

1Z
2R
3A

Load Register Zero
Load Immediate
Load Relative
Load Absolute

Store Register Zero (r$0)
Store Relative
Store Absolute

CC (Note 1)
CC (Note 1)
CC (Note 1)
CC (Note 1)

CC (Note 1)

2
2
3
4

2
3
4

ADD

SUB

DAR

) Z
I
R
A

 Z
I
R
A

100 000
100 001
100 010
100 011

101 000
101 001
101 010
101 011

100 101

1Z
21
2R
3A

1Z
21
2R
3A

1Z

Add to Register Zero wiwo Carry
Add Immediate wiwo Carry
Add Relative wiwo Carry
Add Absolute w/wo Carry

Subtract from Register Zero wiwo Borrow
Subtract Immediate wiwo Borrow
Subtract Relative wiwo Borrow
Subtract Absolute w/o/a Borrow

Decimal Adjust Register

C, CC (Note 1), IDC, OVF
C, CC (Note 1), IDC, OVF
C, CC (Note 1), IDC, OVF
C, CC (Note 11, IDC, OVF

C. CC (Note 1), IDC, OVF
C, CC (Note 11, IDC, OVF
C, CC (Note 1), IDC, OVF
C, CC (Note 1), IDC, OVF

CC (Note 2)

2
2
3
4

2
2
3
4

3

AND

IOR

EOR

Z
I
R
A

Z
I
R
A

Z
I
R
A

010 000
010 001
010 010
010 011

011 000
011 001
011 010
011 011

001 000
001 001
001 010
001 011

1Z
21

3A

1Z
21
2R
3A

1Z
21
2R
3A

2R

AND to Register Zero (r 	0)
AND Immediate
AND Relative
AND Absolute

Inclusive OR to Register Zero
Inclusive OR Immediate
Inclusive OR Relative
Inclusive OR Absolute

Exclusive OR to Register Zero
Exclusive OR Immediate
Exclusive OR Relative
Exclusive OR Absolute

CC (Note 1(
CC (Note 1)
CC (Note 1)
CC (Note 1)

CC (Note 1)
CC (Note 1)
CC (Note 1)
CC (Note 11

CC (Note 11
CC (Note 1)
CC (Note 1)
CC (Note 1)

2
2
3
4

2
2
3
4

2
2
3
4

COM

Z
I
R
A

111 000
111 001
111 010
111 011

1Z
21
2R
3A

Compare to Register Zero Arithmetic/Logical
Compare Immediate Arithmetic/Logical
Compare Relative Arithmetic/Logical
Compare Absolute Arithmetic/Logical

CC (Note 3)
CC (Note 4)
CC (Note 4)
CC (Note 4)

2
2
3
4

RRR

RRL

010 100

110 100

1Z

1Z

Rotate Register Right w/wo Carry

Rotate Register Left w/wo Carry

C, CC, IDC, OVF

C, CC, IDC, OVF

2

2

BCT

BCF
t

BRN

BAR

BDR

ZBRR

BXA

 R
A

.1 	
R

(A' 100.

 R
A

R
) A

R
? A

000 110
000 111

100 110
111

010 110
010 111

110 110
110 111

111 	110
111 	111

100 110 11

100 111 11

2R
38

2R
38

2R
3B

2R
3B

2R
3B

2ER

3E8

Branch On Condition True Relative
Branch On Condition True Absolute

Branch On Condition False Relative
Branch On Condition False Absolute

Branch On Register Non-Zero Relative
Branch On Register Non-Zero Absolute

Branch On Incrementing Register Relative
Branch On Incrementing Register Absolute

Branch On Decrementing Register Relative
Branch On Decrementing Register Absolute

Zero Branch Relative, Unconditional

Branch Indexed Absolute, Unconditional
(Note 5)

—

—
—

—

—
—

—
—

—

3
3

3
3

3
3

3
3

3
3

3

3

IN
P

U
T

/O
U

T
P

U
T

5

TABLE 2. INSTRUCTION SET (CONTINUED)

MNEMONIC OP CODE FORMAT* DESCRIPTION OF OPERATION AFFECTS CYCLES

BST

BSF

BSN

ZBSR

BSXA

RET

{ R

A

(R

A

.{ R

A

C
 E

001 110

001 111

101 110

101 111

011 110

011 	111

101 110 11

101 111 	11

000 101
001 101

2R

3B

2R

3B

2R

3B

2ER

3EB

1Z
1Z

- Branch To Subroutine On Condition True,
Relative

Branch To Subroutine On Condition True,
Absolute

Branch To Subroutine On Condition False,
Relative

Branch To Subroutine On Condition False,
Absolute

Branch To Subroutine On Non-Zero Register,
Relative

Branch To Subroutine On Non-Zero Register,
Absolute

Zero Branch To Subroutine Relative,
Unconditional

Branch To Subroutine, Indexed, Absolute
Unconditional (Note 5)

Return From Subroutine, Conditional
Return From Subroutine and Enable

Interrupt, Conditional

SP

SP

SP

SP

SP

SP

SP

SP

SP
SP, II

3

3

3

3

3

3

3

3

3
3

WRTD

REDD

WRTC

REDC

WRTE

REDE

111 100

011 100

101 100

001 100

110 101

010 101

1Z

1Z

1Z

1Z

21

21

Write Data

Read Data

Write Control

Read Control

Write Extended

Read Extended

—

CC (Note 1)

—

CC (Note 11

CC (Note 1)

2

2

2

2

3

3

HALT

NOP

TMI

010 000 00

110 000 00

111 	101

1E

1 E

21

Halt, Enter Wait State

No Operation

Test Under Mask Immediate

—

—

CC (Note 6)

2

2

3

LPS

SPS

CPS

PPS

TPS

1
U
L

$U
L

1

U
L

i U
? L

U
L

100 100 10
100 100 11

000 100 10
000 100 11

011 101 00
011 101 01

011 101 10
011 101 11

101 101 00
101 101 01

1E
1 E

1E
1E

2E1
2E1

2E1
2E1

2E1
2E1

Load Program Status, Upper
Load Program Status, Lower

Store Program Status, Upper
Store Program Status, Lower

Clear Program Status, Upper, Masked
Clear Program Status, Lower, Masked

Preset Program Status, Upper, Masked
Preset Program Status, Lower, Masked

Test Program Status, Upper, Masked
Test Program Status, Lower, Masked

F, II, SP
CC, IDC, RS, WC, OVF, COM, C

CC (Note 1)
CC (Note 1)

F, II, SP
CC, IDC, RS, WC, OVF, COM, C

F, II, SP
CC, IDC, RS, WC, OVF, COM, C

CC (Note 6)
CC (Note 6)

2
2

2
2

3
3

3
3

3
3

*FORMAT CODE: The number indicates the number of bytes. The letteris) indicate the format type(s). See Fig. 6.
NOTES:
1. Condition code (CC1, CCO): 01 if positive, 00 if zero, 10 if negative.
2. Condition code is set to a meaningless value.
3. Condition code (CC1, CCOI: 01 if RO > r, 00 if RO = r, 10 if RO < r.
4. Condition code (CC1, CC01: 01 if r > V, 00 if r = V, 10 if r < V.
5. Index register must be register 3 or 3'.
6. Condition code (CC1, CCO): 00 if all selected bits are 1s, 10 if not all the selected bits are 1s.

PROGRAM STATUS WORD
PSU
	

PSL

7 6 5 4 3 2 1 0

S F 11
Not
Used

Not
Used SP2 SP1 SPO

7 6 5 4 3 2 1 0

CCI CCO IDC RS WC OVF COM C

S 	Sense SP2 Stack Poin er Two CC1 Condition Code One WC 	With/Without Carry
F 	Flag SP1 Stack Pointer One CCO Condition Code Zero OVF Overflow
II 	Interrupt Inhibit SPO Stack Pointer Zero IDC Interdigit Carry COM Logical/Arith. Compare

RS Register Bank Select C 	Carry/Borrow

13

OPERATION CODE RIV

2 7 	6 	5 	4 	3

OPERATION CODE

0 7 	6 	5 	4 	3 	2 	1

RELATIVE D SPLACEMENT
-64CDISPLACEMENT4+63

3 2 7 	6 	5 	4

t
\/

9

R/V

\ /

R/X

(Z) REGISTER ADDRESSING

(I) IMMEDIATE ADDRESSING

(R) RELATIVE ADDRESSING

ABSOLUTE ADDRESSING

(A) (NON-BRANCH INSTRUCTIONS)

DATA MASK OR BINARY VALUE

'INDEX
I 	CONTROL 	HIGHER ORDER ADDRESS LOWER ORDER ADDRESS

15 	14 	13 	12 	11 	10

OPERATION CODE

15 	14 	13 	12 	11 	10

OPERATION CODE

SYMBOLS:

R - REGISTER NUMBER

V - VALUE OR CONDITION

X - INDEX REGISTER NUMBER

- INDIRECT BIT

23 	22 	21 	20 	19 	18 	17 	16 15 	14 	13 	12 	11 	10 	9 	8
HIGHER ORDER ADDRESS

6
	

5
	

4
	

3
	

2
	

1

LOWER ORDER ADDRESS OPERATION CODE

ABSOLUTE ADDRESSING
(B) (BRANCH INSTRUCTIONS!

23 22 21 20 19 18 17

HIGHER ORDER ADDRESS

PAGE

/

15 	14 	13 	12 	11 	10

R/V

16 9
	

a 7
	

5
	

4
	

3
	

2
	

1

•

UNUSED PAGE
	

LOWER ORDER ADDRESS

INDIRECT ADDRESSING

15 	14 	13 	12 	11 	10 	9
	

8
	

7
	

5
	

4
	

2

OPERATION CODE

• INDEX CONTROL:

(E) MISCELLANEOUS
INSTRUCTIONS

00 = NON-INDEXED
01 = INDEXED WITH AUTO-INCREMENT
10 = INDEXED WITH AUTO-DECREMENT
11 = INDEXED ONLY

7 	6 	5 	4 	3 	2 0

Figure 6. INSTRUCTION FORMATS

14

SUPPORT

DOCUMENTATION

The complete manual set is available in a durable 3-ring binder. The binder
contains the Hardware Specifications, the Assembler Language Manual, the
Software Simulator Manual, and a section called System Application Notes.
Our update service provides customers with new application notes and
updates to the manual set.

The Hardware Specification Manual includes a detailed description of the
instruction set, the pin-outs, the AC and DC electrical characteristics, the
Input/Output and memory interface signals with timing diagrams, the
internal processor organization, and other useful information.

The Assembler Language Manual describes how to write programs in the
2650 symbolic assembly language, the pseudo-ops, and how to assemble a
2650 program. Additional information is presented on how to use the
assembler program, how to interpret the output listings and how to load
object modules.

The Simulator Manual describes the nature of the simulation program,
how to write simulation commands and how to interpret the simulation
output.

System Application Notes are included to help the user design with the
2650 processor. These notes present detailed technical information on
various subjects of interest and apply to either programming, hardware con-
figuration, or system concepts. This section will continue to grow.

Examples of Application Notes are:
• Serial I/O for the 2650
• Memory Interfaces
• How to use the Decimal

Adjust instruction

SOFTWARE SUPPORT

• I/O Device Selection Methods
• A Minimal System Configuration

Signetics-developed software is available to both the batch processing user
and the timesharing user. The Batch Assembler and Batch Simulator are
written in standard FORTRAN and may be compiled and executed on most
medium to large scale computer systems. Because of the modular design
used, it is expected that many minicomputer users will also be able to utilize
these programs. The main features of the programs are listed in Tables 3
and 4.

Signetics has also made the Batch Assembler, Batch Simulator and Inter-
active Simulator available on several international timesharing networks for
those customers who wish to run these programs using a timesharing service.

When a customer chooses to follow the timesharing approach, he can also
make use of the interactive version of the 2650 Simulator. With the Inter-

TABLE 4. SIMULATOR FEATURES

TABLE 3. ASSEMBLER FEATURES

° 2-Pass Assembler

• Diagnostic error messages

• Symbolic addressing including
forward references

Constant generation

• Pseudo-ops to aid programming

Free format source code

• Cycle Counter for timing estimates

• Instruction fetch break points

• Operand fetch break points
Trace facilities

Snapshot dumps

• Patching facility

& Statistical information generated

• Easy-to-use command language

* Optionally selected start and end addresses

• Dynamic changes of simulated registers

• Optionally simulates ROM-RAM environment

15

active Simulator the software designer can utilize his timesharing terminal to
dynamically alter his program and effectively reduce his program develop-
ment time.

The Signetics 2650 Symbolic Assembly Language has been modeled after
other assembly languages; because of this, the assembler is easy to learn and
to use.

The Simulator programs are designed to aid the user in testing and correct-
ing his programs. This approach is an alternative to dedicating hardware
development tools to one or two programmers or designers for program
development. The Simulator allows users to simulate the execution of pro-
grams without utilizing a processor. The Simulator utilizes the object module
produced by the Assembler as input, and through use of appropriate simu-
lator commands, can display and/or alter the internal registers of the simu-
lated 2650 processor and the simulated memory contents.

The programs are, usually delivered delivered on IBM compatible magnetic
tape "mini-reels". All programs are in FORTRAN source code as card image
records.

A growing Program Library is available to Signetics microprocessor users.
We encourage users to submit all non-proprietary programs to Signetics to
add to the program library so that we may make them available to other
users.

PROTOTYPING HARDWARE

PROTOTYPING CARD

In order to develop a product using the Signetics 2650 microprocessor,
both hardware and software must be designed. Recognizing that the basic
needs of many of our customers for prototyping systems will be similar,
Signetics has designed a prototyping card containing a basic microcomputer
system. This card provides a starting point for the development of hardware
interfaces while simultaneously providing a tool for software checkout.

The first Signetics prototyping card consists of a 2650 processor, ROM
memory containing a loader and editor, RAM memory for program storage
before committing to PROM or ROM, a TTY interface for easy access, a
crystal-controlled clock and two input and output ports (8 bits each).

SYSTEM COMPATIBLE FAMILIES

The 2650 has been designed to interface directly with industry standard
logic and memory families, particularly 7400 and 74LS00 logic families,
TTL compatible 5V NMOS memories (Signetics' 2600 series) and bipolar
memories (Signetics' 8200 and 82S00 series). Many interface circuits in the
8T00 family are particularly useful for constructing interfaces in 2650
systems.

Other logic families including 8200 TTL, 82S00 STTL and 4000 CMOS
are compatible with the 2650. See Table 5.

TABLE 5. SYSTEM COMPATIBLE FAMILIES

Logic 	7400, 8200 	— 	TTL
74LS00 	— TTL-LS

82S00 	— STTL
4000 	 — CMOS

Memory 	2500 	 PMOS
2600 	 — NMOS
7400, 8200 	— 	Bipolar TTL
82S00 	— 	Bipolar STTL

Interface 	8100 	 — 	TTL, STTL

16

CHAPTER II

2650 HARDWARE

FEATURES

GENERAL PURPOSE PROCESSOR
SINGLE CHIP
FIXED INSTRUCTION SET
PARALLEL 8-BIT BINARY OPERATIONS
40 PIN DUAL IN-LINE PACKAGE

N-CHANNEL SILICON GATE MOS TECHNOLOGY
TTL COMPATIBLE INPUTS AND OUTPUTS
SINGLE POWER SUPPLY OF +5 VOLTS
SEVEN GENERAL PURPOSE REGISTERS
RETURN ADDRESS STACK, 8 DEEP, ON CHIP

32K BYTE ADDRESSING RANGE
SEPARATE ADDRESS AND DATA LINES
VARIABLE LENGTH INSTRUCTIONS OF 1, 2, OR 3 BYTES
75 INSTRUCTIONS
MACHINE CYCLE TIME OF 2.4i.tsec
AT CLOCK FREQUENCY OF 1.25 MHz

DIRECT INSTRUCTIONS TAKE 2, 3 or 4 CYCLES
SINGLE PHASE TTL LEVEL CLOCK INPUT
STATIC LOGIC
TRI-STATE OUTPUT BUSSES
REGISTER, IMMEDIATE, RELATIVE, ABSOLUTE
INDIRECT, AND INDEXED ADDRESSING MODES
VECTOR INTERRUPT FORMAT

18

INTRODUCTION
GENERAL FEATURES

The 2650 processor is a general purpose, single chip, fixed instruction set,
parallel 8-bit binary processor. A general purpose processor can perform any
data manipulations through execution of a stored sequence of machine in-
structions. The processor has been designed to closely resemble conventional
binary computers, but executes variable length instructions of one to three
bytes in length. BCD Arithmetic is made possible through use of a special
"DAR" machine instruction.

The 2650 is manufactured using Signetics' N-channel silicon gate MOS
technology. N-channel provides high carrier mobility for increased speed and
also allows the use of a single 5 volt power supply. Silicon gate provides for
better density and speed. Standard 40 pin dual in-line packages are used for
the processor.

The 2650 contains a total of seven general purpose registers, each eight
bits long. They may be used as source or destination for arithmetic opera-
tions, as index registers, and for I/O transfers.

The processor can address up to 32,768 bytes of memory in four pages of
8,192 bytes each. The processor instructions are one, two, or three bytes
long, depending on the instruction. Variable length instructions tend to con-
serve memory space since a one-or two-byte instruction may often be used
rather than a three byte instruction. The first byte of each instruction always
specifies the operation to be performed and the addressing mode to be used.
Most instructions use six of the first eight bits for this purpose, with the
remaining two bits forming the register field. Some instructions use the full
eight bits as an operation code.

The most complex direct instruction is three bytes long and takes 9.6
microseconds to execute. This figure assumes that the processor is running at
its maximum clock rate, and has an associated memory with cycle and access
times of one microsecond or less. The fastest instruction executes in 4.8
microseconds.

The clock input to the processor is a single phase pulse train and uses only
one interface pin. It requires a normal TTL voltage swing, so no special clock
driver is required.

The Data Bus and Address signals are tri-state to provide convenience in
system design. Memory and I/O interface signals are asynchronous so that
Direct Memory Access (DMA) and multiprocessor operations are easy to
implement.

The 2650 has a versatile set of addressing modes used for locating oper-
ands for operations. They are described in detail in the INSTRUCTIONS
section of this manual.

The interrupt mechanism is implemented as a single level, address vector-
ing type. Address vectoring means that an interrupting device can force the
processor to execute code at a device determined location in memory. The
interrupt mechanism is described in detail in the FEATURES section of this
manual.

19

APPLICATIONS

The ability of the semi-conductor industry to manufacture complete gen-
eral purpose processors on single chips represents a significant technological
advance which should prove to be of great benefit to digital systems manu-
facturers. In terms of chip size and density of transistors, the processors are
simply extensions of the continually evolving MOS technology. But in terms
of function provided, a significant threshold has been crossed.

By allowing designers to convert from hardware logic to programmed
logic, the integrated processor provides several important advantages.
1. Logic functions may be implemented in memory bits instead of logic gates. The user

then has greater access to the advantages of memory circuits. Memories use patterned
circuitry and thus provide greater density and therefore greater economy.

2. Random logic implementations of complex functions are highly specialized and cannot
be used in other applications. They are not often used in large volume. Programmed
logic, on the other hand, relies on general purpose processor and memory circuits that
are used in many applications. Thus, economies of volume are available for both the
user and the manufacturer.

3. Because the functional specialization resides in the user's program rather than the
hardware logic, changes, corrections and additions can be much easier to make and can
be accomplished in a much shorter time.

4. With the programmed logic approach it is often possible to add new features and
create new products simply by writing new programs.

5. The design cycle of a system using programmed logic can be significantly shorter than
a similar system that attempts to use custom random logic. The debugging cycle is also
greatly compressed.

A general purpose processor designed to implement programmed logic has
many characteristics that allow it to do conventional computer operations as
well. Many applications will specialize in programmed logic or in data pro-
cessing, but some will take advantage of both areas. In a line printer applica-
tion, for example, a processor can act primarily as a controller handling the
housekeeping duties, control sequencing and data interfacing for the printer.
It also might buffer the data or do some code conversions, but that is not its
primary duty. On the other hand, in a text editing intelligent terminal, the
processor is mainly concerned with data manipulation since it handles code
translations, display paging, insertions, deletions, line justification, hyphena-
tion, etc.

A point-of-sale type of terminal represents an application that combines
both control and data processing activities for the processor. Coordinating
the activities of the various devices and displays that make up the terminal is
an important part of the job, as are the calculations that are essential to the
operation of the machine.

20

INTERNAL ORGANIZATION
INTERNAL REGISTERS

The block diagram for the 2650 shows the major internal components and
the data paths that interconnect them. In order for the processor to execute
an instruction, it performs the following general steps:
1. The Instruction Address Register provides an address for memory.
2. The first byte of an instruction is fetched from memory and stored in the Instruction

Register.
3. The Instruction Register is decoded to determine the type of instruction and the

addressing mode.
4. If an operand from memory is required, the operand address is resolved and loaded

into the Operand Address Register.
5. The operand is fetched from memory and the operation is executed.
6. The first byte of the next instruction is fetched.

The Instruction Register (IR) holds the first byte of each instruction and
directs the subsequent operations required to execute each instruction. The
IR contents are decoded and used in conjunction with the timing informa-
tion to control the activation and sequencing of all the other elements on the
chip. The Holding Register (HR) is used in some multiple-byte instructions
to contain further instruction information and partial absolute addresses.

The Arithmetic Logic Unit (ALU) is used to perform all of the data
manipulation operations, including Load, Store, Add, Subtract, And, Inclu-
sive Or, Exclusive Or, Compare, Rotate, Increment and Decrement. It con-
tains and controls the Carry bit, the Overflow bit, the Interdigit Carry and
the Condition Code Register.

The Register Stack contains six registers that are organized into two
banks of three registers each. The Register Select bit (RS) picks one of the
two banks to be accessed by instructions. In order to accomodate the regis-
ter-to-register instructions, register zero (RO) is outside the array. Thus,
register zero is always available along with one set of three registers.

The Address Adder (AA) is used to increment the instruction address and
to calculate relative and indexed addresses.

The Instruction Address Register (IAR) holds the address of the next
instruction byte to be accessed. The Operand Address Register (OAR) stores
operand addresses and sometimes contains intermediate results during effec-
tive address calculations.

The Return Address Stack (RAS) is an eight level, Last In, First Out
(LIFO) storage which receives the return address whenever a Branch-to-Sub-
routine instruction is executed. When a Return instruction is executed, the
RAS provides the last return address for the processor's IAR. The stack
contains eight levels of storage so that subroutines may be nested up to eight
levels deep. The Stack Pointer (SP) is a three bit wraparound counter that
indicates the next available level in the stack. It always points to the current
address.

21

O et 	 ADDRESS
BUS

22

Z -7
INTERRUPT

REQUEST
INTERRUPT

LOGIC
INTERRUPT 	

ACKNOWLEDGE

NO LOGIC VO
CONTROL LINES

r, 7_ CLOCK

TIMING LOGIC DECODING AND CONTROL LOGIC

	ti
CONDITION CODE

AND
BRANCH LOGIC

?
4#•DATA BUS

Figure 7. SIGNETICS 2650 BLOCK DIAGRAM

INSTRUCTION ADDRESS REGISTER

OPERAND ADDRESS REGISTER

ADDRESS ADDER
INSTRUCTION

REGISTER HOLDING REGISTER

PROGRAM STATUS WORD

The Program Status Word (PSW) is a special purpose register within the
processor that contains status and control bits. It is 16 bits long and is
divided into two bytes called the Program Status Upper (PSU) and the
Program Status Lower (PSL).

The PSW bits may be tested, loaded, stored, preset or cleared using the
instructions which effect the PSW. The sense bit, however, cannot be set or
cleared because it is directly connected to pin #1.

7 6 5 4 3 2 1 0

S F II
Not
Used

Not
Used

SP2 SP1 SPO

S Sense
F Flag
II Interrupt Inhibit

SP2 Stack Pointer Two
SP1 Stack Pointer One
SPO Stack Pointer Zero

7 6 5 4 3 2 1 0

CC1 CCO IDC RS WC OVF COM C

	

CC1 	Condition Code One

	

CCO 	Condition Code Zero

	

IDC 	Interdigit Carry

	

RS 	Register Bank Select

	

WC 	With/Without Carry
OVF Overflow

	

COM 	Logical/Arithmetic Compare
C Carry/Borrow

PSU

PS L

•

SUBROUTINE RETURN ,1
ADDRESS STACK

REGISTER
STACK

r
ei—ts
"4-1/

RO

PROGRAM
STATUS

WORD

SENSE (5)

The Sense bit in the PSU reflects the logic state of the sense input to the
processor at pin #1. The sense bit is not affected by the LPSU, PPSU, or
CPSU instructions. When the PSU is tested (TPSU) or stored into register
zero (SPSU), bit #7 reflects the state of the sense pin at the time of the
instruction execution.

FLAG (F)
The Flag bit is a simple latch that drives the Flag output (pin #40) on the

processor.

INTERRUPT INHIBIT (II)
When the Interrupt Inhibit (II) bit is set, the processor will not recognize

an incoming interrupt. When interrupts are enabled (II=0), and an interrupt
signal occurs, the inhibit bit in the PSU is then automatically set. When a
Return-and-Enable instruction is executed, the inhibit bit is automatically
cleared.

STACK POINTER (SP)
The three Stack Pointer bits are used to address locations in the Return

Address Stack (RAS). The SP designates the stack level which contains the
current return address. The three SP bits are organized as a binary counter
which is automatically incremented with execution of Branch-to-Subroutine
instructions, and decremented with execution of Return instructions.

CONDITION CODE (CC)
The Condition Code is a two bit register which is set by the processor

whenever a general purpose register is loaded or modified by the execution
of an instruction. Additionally, the CC is set to reflect the relative value of
two bytes whenever a compare instruction is executed.

The following table indicates the setting of the Condition Code whenever
data is set into a general purpose register. The data byte is interpreted as an 8-
bit, two's complement number.

Register Contents
	

CC1
	

CCO

Positive 0 1

Zero 0 0

Negative 1 0

For compare instructions the following table summarizes the setting of
the CC. The data is compared as two 8-bit absolute numbers if bit #1, the
COM bit, of the Program Status Lower byte is set to indicate "logical"
compare (COM=1). If the COM bit indicates "arithmetic" (COM=0), the
comparison instructions interpret the data bytes as two 8-bit two's com-
plement binary numbers.

	

Register to Storage
	

Register to Register

	

Compare Instruction
	

Compare Instruction
	

CC1
	

CCO

Reg X Greater Than Storage Reg 0 Greater Than Reg X 0 1

Reg X Equal to Storage Reg 0 Equal to Reg X 0 0

Reg X Less Than Storage Reg 0 Less Than Reg X 1 0

23

The CC is never set to 11 by normal processor operations, but it may be
explicitly set to 11 through LPSL or PPSL instruction execution.

INTERDIGIT CARRY (DC)
For BCD arithmetic operations it is sometimes essential to know if there

was a carry from bit #3 to bit #4 during the execution of an arithmetic
instruction.

The IDC reflects the value of the Interdigit Carry from the previous add or
subtract instruction. After any add or subtract instruction execution, the
IDC contains the carry or borrow out of bit #3.

The IDC is also set upon execution of Rotate instructions when the WC
bit in the PSW is set. The IDC will reflect the same information as bit #5 of
the operand register after the rotate is executed. See Figure 8.

REGISTER SELECT (RS)
There are two banks of general purpose registers with three registers in

each bank. The register select bit is used to specify which set of three general
purpose registers will be currently used. Register zero is common and is
always available to the program. An individual instruction may address only
four registers, but the bank select feature effectively expands the available
on-chip registers to seven. When the Register Select Bit is "0", registers 1, 2,
& 3 in register bank #0 will be accessable, and when the bit is "1", registers
1, 2, & 3 in register bank #1 will be accessable.

WITH/WITHOUT CARRY(WC)

This bit controls the execution of the add, the subtract and the rotate in-
structions.

Whenever an add or a subtract instruction executes, the following bits are
either set or cleared: Carry/Borrow (C), Overflow (OVF), and Interdigit Carry
(IDC). These bits are set or reset without regard to the value of the WC bit.
However, when WC=1, the final value of the carry bit affects the result of an
add or a subtract instruction, i.e., the carry bit is either added (add instruc-
tion) or subtracted (subtract instruction) from the ALU.

Whenever a rotate instruction executes with WC=0, only the eight bits of
the rotated register are affected. However, when WC=1, the following bits
are also affected: Carry/Borrow (C), Overflow (OVF) and Interdigit Carry
(IDC). The carry/borrow bit is combined with the 8-bit register to make a
nine-bit rotate (see Figure 8). 	The overflow bit is set whenever the sign
bit (bit 7) of the rotated register changes its value, i.e., from a zero (0) to a
one (1) or from a one (1) to a zero (0). The interdigit carry bit is set to the
new value of bit 5 of the rotated register.

OVERFLOW (OVF)
The overflow bit is set during add or subtract instruction executions

whenever the two initial operands have the same sign but the result has a
different sign. Operands with different signs cannot cause overflow. Ex-
ample: A binary +124 (01111100) added to a binary +64 (01000000) pro-
duces a result of (10111100) which is interpreted in two's complement form
as a —68. The true answer would be 188, but that answer cannot be con-
tained in the set of 8-bit, two's complement numbers used by the processor,
so the OVF bit is set.

Rotate instructions also cause OVF to be set whenever the sign of the
rotated byte changes.

91

IDC (NOT CHANGED)

(NOT CHANGED)
7 	6 	5 	4 	3 	2 	1 	0

7 	6 	5 	4 	3 	2 	1 	0

ROTATE REGISTER RIGHT WITH CARRY

ROTATE REGISTER RIGHT WITHOUT CARRY

IDC 	

7 	6 	5 	4 	3 	2 	1 	0

ROTATE REGISTER LEFT WITH CARRY

25

IDC (NOT CHANGED)

DI
(NOT CHANGED)

7 	6 	5 	4 	3 	2 	1 	0

Figure 8. ROTATE REGISTER LEFT WITHOUT CARRY

COMPARE (COM)
The compare control bit determines the type of comparison that is ex-

ecuted with the Compare instructions. Either logical or arithmetic com-
parisons may be made. The arithmetic compare assumes that the comparison
is between 8-bit, two's complement numbers. The logical compare assumes
that the comparison is between 8-bit positive binary numbers. When COM is
set to 1, the comparisons will be logical, and when COM is set to 0, the
comparisons will be arithmetic. See Condition Code (CC).

CARRY (C)

The Carry bit is set by the execution of any add or subtract instruction
that results in a carry or borrow out of the high order bit of the ALU. The
carry bit is set to 1 by an add instruction that generates a carry, and a
subtract instruction that does not generate a borrow. Inversely, an add that
does not generate a carry causes the C bit to be cleared, and a subtract
instruction that generates a borrow also clears the carry bit.

Even though a borrow is indicated by a zero in the Carry bit, the pro-
cessor will correctly interpret the zero during subtract with borrow opera-
tions as in the following table.

Low Order bit
	

Low Order bit
	

Carry bit
Minuend
	

Subtrahend
	

Borrow bit
	

Low Order Bit Result
o 0 0 1
o 0 1 0
o 1 0 0
o 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

The carry bit may also be set or cleared by rotate instructions as described
earlier under "With/Without Carry".

To perform an Add with Carry or a Subtract with Borrow, the WC bit
must be set.

000000000000000 001111111111111

010000000000000 011111111111111

100000000000000 101111111111111

110000000000000 111111111111111

010-819110

819210-16,38310

16,384 10-24,575 10

24,57610 —32,76710

page 0

page 1

page 2

page 3

MEMORY ORGANIZATION

The 2650 has a maximum memory addressing capability of 010
—32,76710 locations. As may be seen in the INSTRUCTIONS section of this
manual, most direct addressing instructions have thirteen bits allocated for
the direct address. Since thirteen bits can only address locations 010
—8,19110, a paging system was implemented to accomodate the entire
address range.

The memory may be thought of as being divided into four pages of 8,192
bytes each. The addresses in each page range as in the following chart:

START ADDRESS END ADDRESS

The low order 13-bits in every page range through the same set of num-
bers. These 13-bits are the same 13-bits addressed by non-branch instructions
and are also the same 13-bits which are brought out of the 2650 on the
address lines ADRO — ADR12.

The high order two bits of the 15-bit address are known as the page bits.
The page bits when examined by themselves also represent, in binary, the
number of the memory page. Thus, the address 010000001101101 is known
as address location 10910 in page 1. The page bits, corresponding to
ADR13 and ADR14 are brought out of the 2650 on pins 19 & 18. These bits
may be used for memory access when more than 8,192 bytes of memory are
connected.

There are no instructions to explicitly set the page bits. They may be set
through execution of direct or indirect, branch or branch-to-subroutine in-
structions. It may be seen that these instructions (see INSTRUCTION
Section) have 15-bits allocated for address and when such an instruction is
executed, the two high order address bits are set into the page bit latches in
the 2650 processor and will appear on ADR13 and ADR14 during memory
accesses until they are specifically changed.

For memory access from non-branch instructions, the 13-bit direct add-
ress will address the corresponding location within the current page only.
However, the non-branch memory access instruction may access any byte in
any page through indirect addressing which provides the full 15-bit address.
In the case of non-branch instructions, the page bits are only temporarily
changed to correspond to the high order two bits of the 15-bit indirect add-
ress used to fetch the argument byte. Immediately after the memory access,
ADR13 & ADR14 will revert to their previous value.

27

The consequences of this page address system may be summarized by the
following statements.
1. The RESET signal clears both page latches, i.e., ADR13 & ADR14 are cleared to zero.
2. All non-branch, direct memory access instructions address memory within the current

page.
3. All non-branch, memory access instructions may access any byte of addressable mem-

ory through use of indirect addressing which temporarily changes the page bits for the
argument access, but which revert back to their previous state immediately following
instruction execution.

4. All direct and indirect addressing branch instructions set the page bits to correspond to
the high order two bits of the 15 bit address.

5. Programs may not flow across page boundaries, they must branch to set the page bits.
6. Interrupts always drive the processor to page zero.

INTERFACE
SIGNALS

RESET
The RESET signal is used to cause the 2650 to begin processing from a

known state. RESET will normally be used to initialize the processor after
power-up or to restart a program. RESET clears the Interrupt Inhibit control
bit, clears the internal interrupt-waiting signal, and initializes the IAR to zero.
RESET is normally low during program execution, and must be driven high
to activate the RESET function. The leading and trailing edges may be
asynchronous with respect to the clock. The RESET signal must be at least
three clock periods long. If RESET alone is used to initiate processing, the
first instruction will be fetched from memory location page zero byte zero
after the RESET signal is removed. Any instruction may be programmed for
this location including a Branch to some program located elsewhere.

Processing can also be initiated by combining an interrupt with a reset. In
this case, the first instruction to be executed will be at the interrupt address.

CLOCK
The clock signal is a positive-going pulse train that determines the instruc-

tion execution rate. Three clock periods comprise a processor cycle. Direct
instructions are 2, 3, or 4 processor cycles long, depending on the specific
type of instruction. Indirect addressing adds two processor cycles to the
direct instruction times.

PAUSE
The PAUSE input provides a means for temporarily stopping the execu-

tion of a program. When PAUSE is driven low, the 2650 finishes the instruc-
tion in progress and then enters the WAIT state. When PAUSE goes high,
program execution continues with the next instruction. If PAUSE is turned
on then off again before the last cycle of the current instruction begins,
program execution continues without pause. If both PAUSE and INTREQ
occur prior to the last cycle of the current instruction, the interrupt will be
recognized, and an INTACK will be generated immediately following release
of the PAUSE. The next instruction to be executed will be a ZBSR to ser-
vice the interrupt.

If an INTREQ occurs while the 2650 is in a WAIT state due to a PAUSE,
the interrupt will be acknowledged and serviced after the execution of the
next normal instruction following release of the PAUSE.

INTREQ
The Interrupt Request input (normally high) is a means for external

devices to change the flow of program execution. When the processor recog-
nizes an INTREQ, i.e., INTREQ is driven low, it finishes the instruction in
progress, inserts a ZBSR instruction into the IR, turns on the Interrupt
Inhibit bit in the PSU, and then responds with INTACK and OPREQ signals.
Upon receipt of INTACK, the interrupting device may raise the INTREQ
line and present a data byte to the processor on the DBUS. The required
byte takes the same form as the second byte of a ZBSR instruction. Thus,
the interrupt initiated Branch-to-Subroutine instruction may have a relative
target address anywhere within the first or last 64 bytes of memory page 0.
If indirect addressing is specified, a branch to any location in addressable
memory is possible.

29

For devices that do not need the flexibility of the multiple target address-
es, a byte of eight zeroes may be presented and will cause a direct subroutine
branch to memory location zero in page zero. The relative address presented
by the interrupting device is handled with a normal I/O read sequence using
the usual interface control signals. The addition of the INTACK signal distin-
guishes the interrupt address operation from other operations that may take
place as part of the execution of the interrupted instruction. At the same
time that it acknowledges the INTREQ, the processor automatically sets the
bit that inhibits recognition of further interrupts. The Interrupt Inhibit bit
may be cleared anytime during the interrupt service routine, or a Re-
turn-and-Enable instruction may be used to enable interrupts upon leaving
the routine. If an INTREQ is waiting when the Interrupt Inhibit bit is
cleared, it will be recognized and processed immediately without the execu-
tion of an intervening instruction.

OPACK

The Operation Acknowledge signal is a reply from external memory or
I/O devices as a response to the Operation Request signal from the processor.
OPREQ is used to initiate an external operation. The affected external de-
vice indicates to the processor that the operation is complete by turning on
the OPACK signal. This procedure allows asynchronous functioning of exter-
nal devices.

If a Memory operation is initiated by the processor, the memory system
will provide an OPACK when the requested memory data is valid on the
Data Bus. If an I/O operation is initiated by the processor, the addressed I/O
device may respond with an OPACK as soon as the write data is accepted
from the Data Bus, or after the read operation is completed. However, in
order to avoid slowing down the processor when using memories or I/O
devices that are just fast enough to keep the processor operating at full speed
the OPACK signal must be returned before the external operation is com-
pleted. Any OPACK that is returned within 600 nsec. following an OPREQ
will not delay the processor. Data from a read operation can return up to
1000 nsec. after an OPREQ is sent and still be accepted by the processor
without causing delays. If all devices will always respond within these time
limits, the OPACK line may be permanently connected in the ON (low)
state. Whenever an OPACK is not available within that time, the processor
will delay instruction execution until the first clock following receipt of the
OPACK. All output line conditions remain unchanged during the delay and
the processor does not enter the WAIT state. OPACK is true in the low state
and false in the high state.

SENSE
The SENSE line provides an input line to the 2650 that is independent of

the normal I/O Bus structures. The SENSE signal is connected directly to one
of the bits in the Program Status Word. It may be stored or tested by an
executing program. When a store (SPSU) or test (TPSU) instruction is exe-
cuted, the SENSE line is sampled during the last cycle of the instruction.

Through proper programming techniques the SENSE signal may be used
to implement a direct serial data input channel, or it may be used to present
any bit of information that the designer chooses.

The SENSE input and FLAG output facilities provide the simplest method
of communicating data in or out of the 2650 Processor as neither address
decoding nor synchronization with other processor signals is necessary.

ADR EN
The Address Enable signal allows external control of the tri-state address

outputs (ADRO-ADR12). When ADREN is driven high, the address lines are
switched to their third state and show a high output impedance. This feature
allows wired-OR connections with other signals. The ADR13 and ADR14
lines which are multiplexed with other signals are not affected by this signal.

When a system is not designed to utilize the feature, the ADREN input
may be connected permanently to a low signal source.

DBUSEN
The Data Bus Enable signal allows external control of the tri-state Data

Bus output drivers. When DBUSEN is driven high, the Data Bus will exhibit a
high output impedance. This allows wired-OR connection with other signals.

When a system is not designed to utilize this feature, the DBUSEN input
may be permanently connected to a low signal source.

DBUS
The Data Bus signals form an 8-bit bi-directional data path in and out of

the processor. Memory and I/O operations use the Data Bus to transfer the
write or read data to or from memory.

The direction of the data flow on the Data Bus is indicated by the state of
the R/W line. For Write operations, the output buffers in the processor out -
put data to the bus for use by memory or by external devices. For Read
operations, the buffers are disabled and the data condition of the bus is
sensed by the processor. The output buffers may also be disabled by the
DBUSEN signal.

The signals on the data bus are true signals, i.e., a one is a high level and a
zero is low.

ADR
The Address signals form a 15 bit path out of the processor, and are used

primarily to supply memory addresses during memory operations. The ad-
dresses remain valid as long as OPREQ is on so that no external address
register is required. For extended I/O operations, the low order eight bits of
the ADR lines are used to output the immediate byte of the instruction
which typically is interpreted as a device address.

The 13 low order lines of the address are used only for address informa-
tion. The two high order address lines are multiplexed with I/O control
information. During memory operations, the lines serve as memory address-
es. During I/O operations they serve as the D/C and E/NE control lines.
Demultiplexing is accomplished through use of the Memory/I0 Control line.

The line ADRO carries the low order address bit, and ADR12 carries the
high order address bit. The output drivers may be disabled by the ADREN
signal.

The signals on the address bus are true, i.e., a one is a high level and a zero
is low.

OPREQ
The Operation Request output is the_coordinating signal for all external

operations. The M/I0, 117W, E/NE, D/ and INTACK lines are operation
control signals that describe the nature of the external operation when the
OPREQ line is true. The DBUS and ADR bus also should not be considered

31

valid except when OPREQ is in the high, or on state.

No output signals from the processor will change as long as OPREQ is on,
with the exception of WRP. OPREQ will stay on until the external operation
is complete, as indicated by the OPACK input. The processor delays all
internal activity following an OPREQ until the OPACK signal is received.

INTACK
The Interrupt Acknowledge signal is used by the processor to respond to

an external interrupt. When an INTREQ is received, the current instruction
is completed before the interrupt is serviced. When the processor is ready to
accept the interrupt it sets the INTACK to the high, or on, state along with
OPREQ. The interrupting device then presents a relative address byte to the
DBUS and responds with an OPACK signal. INTREQ may be turned off
anytime following INTACK. INTACK will fall after the processor receives
the OPACK signal.

M/IO
The Memory/T-6 output is one of the operation control signals that de-

fines external operations. M/I0 indicates whether anoperation is memory or
I/O and should be used to gate Read or Write signals between memory or I/O
devices.

The state of M/IO will not change while OPREQ is high.

The high state corresponds to Memory operation, and the low state cor-
responds to an I/O operation.

R/W
The Read/Write output is one of the operation control signals that defines

external operations. R/W indicates whether an operation is Read or Write. It
controls the nature of the external operation and indicates in which direc-
tion the DBUS is pointing. 117/W should not be considered valid until OPREQ
is on and the state of the R/W line does not change as long as OPREQ is on.

The high state corresponds to the Write operation, and the low state
corresponds to the Read operation.

D/t.
The Data/Control Output is an I/O signal which is used to discriminate

between the execution of the two types of one byte I/O instructions. There
are four one byte I/O instructions; WRTC, WRTD, REDC, REDD. When
Read Control or Write Control is executed, the D/C line takes on the low
state which indicates Control (C). When Read Data or Write Data is exe-
cuted, the DX line takes on the high state, indicating Data (D).

DIC should not be considered valid until (a) OPREQ is on and (b) M/IO
indicates an I/O operation and (c) E/NE indicates a non-extended (one byte)
operation. DX is multiplexed with a high order address line. When the M/IO
line is in the I/O state , the ADR14-D/C line should be interpreted as
"D/C". (When the M/IO line is in the M state , the ADR14-D/C line should
be interpreted as memory address line #14.)

E/NE
The Extended/Non-Extended output is the operation control signal that

is used to discriminate between two byte and one byte I/O operations. Thus,
E/NE indicates the presence or absence of valid information on the eight low
order address lines during I/O operations.

E/NE should not be considered valid until (a) OPREQ is on and (b) M/IO
indicates an I/O operation. E/NE is multiplexed with a high order address
line. When the MO line is in the I/O state , the ADR13-E/NE line should be
interpreted as "E/NE". (When the .M/I0 line is in the M state, the
ADR13-E/NE line should be interpreted as memory address bit #13.)

There are six I/O instructions; REDE, WRTE, REDC, REDD, WRTC,
WRTD. When either of the two byte I/O instructions is executed (REDE,
WRTE), the E/NE line takes on the high state or "Extended" indication.
When any of the one byte I/O instructions is executed, the line takes on the
low state or "non-extended" indication.

RUN/WAIT

The RUN/WAIT output signal indicates the Run/Wait Status of the pro-
cessor. The WAIT state may be entered by executing a HALT instruction or
by turning on the PAUSE input. At any other time the processor will be in a
RUN state.

When the processor is executing instructions, the line is in the high or
RUN state; when in the WAIT state, the line is held low.

The HALT initiated WAIT condition can be changed to RUN by a RE-
SET or an interrupt. The PAUSE initiated WAIT condition can be changed
to RUN by removing the PAUSE input.

If a RESET occurs during a PAUSE initiated WAIT state and the PAUSE
remains low; the processor will be reset, fetch one instruction from page zero
byte zero and return to the WAIT state. When the PAUSE is eventually
removed, the previously fetched instruction will be executed.

FLAG
The FLAG output indicates the state of the Flag bit in the PSW. Any

change in the Flag bit is reflected by a change in the FLAG output. A one
bit in the Flag will give a high level on the FLAG output pin. The LPSU,
PPSU, and CPSU instructions can change the state of the Flag bit.The FLAG
output is always a valid indication of the state of the Flag bit without regard
for the status of the processor or control signals. Changes in the Flag bit are
synchronized with the last cycle of the changing instruction.

WRP
The Write Pulse output is a timing signal from the processor that provides

a positive-going pulse in the middle of each requested write operation
(memory or I/O) and a high level during read operations. The WRP is
designed to be used with Signetics 2606 R/W memory circuits to provide a
timed Chip Enable signal. For use with memory, it may be gated with the
M/IO signal to generate a Memory Write Pulse.

Because the WRP pulse occurs during any write operation, it may also be
used with I/O write operations where convenient.

33

tpC
k 	

CP

T1 T2 	 TO 	T1

SIGNALS VALID

CLOCK

OPREQ

OPACK

DBUS IN

DBUS OUT

EtCSA
CONTROL
SIGNALS
WO, VOW, 	 KIWPD
UNE, Did) 	

WRP

1K-tCOR 	 tOR-4"

tOAD
IENtOAH

	tD1H-1-01

(-tD0A

ADREN 	 1 	

lie••• tABD

HIGH IMPEDANCE
STATE

IE-tORT

ADR

IABD

HIGH IMPEDANCE
STATE

SIGNAL TIMING

The Clock input to the 2650 provides the basic timing information that
the processor uses for all its internal and external operations. The clock rate
determines the instruction execution rate, except to the extent that external
memories and devices slow down the processor. Each internal processor
cycle is composed of three clock periods as shown in Figure 9,2650 TIMING
DIAGRAMS.

GENERAL TIMING

LAST CYCLE
OF CURRENT 	
INSTRUCTION

CLOCK TO T1 T1 	T2 	TO T1 T2 TO T1

I
OPREQ

INTREQ

/
tIRH

I I NTACK

---'1
INTERRUPT TIMING

DBUSEN

	I
1*--tDBD

-41 le-tDBD

DBUS HIGH IMPEDANCE
STATE SIGNALS VALID

HIGH IMPEDANCE
STATE

—M ic-toRT
TRI-STATE BUS TIMING

Figure 9. 2650 TIMING DIAGRAMS

TO T1 	 T2 TO

INTERNAL

DELAY ^ 500ny

INTERN

DELAY ,500nS

CONTROL OUTPUTS AND

ADDRESSES VALID

,600nS AT f 11}

2.4µ5 CYCLE

ALLOWABLE MEMORY

ACCESS TIME (31

2650 CYCLE TIME

,3 CLOCK PERIODS=2.40S MINIMUM

OPREQ is the master control signal that coordinates all operations
external to the processor. Many of the other signal interactions are related to
OPREQ. The timing diagram assumes that the clock periods are constant and
that OPACK is returned in time to avoid delaying instruction execution. In
that case, OPREQ will be high for 1.5 clock periods (1/2 of tpc) and then
will be low for another 1.5 clock periods.

The interface control signals have been designed to implement asynchro-
nous interfaces for both memory and input/output devices. The control
signals are relatively simple and provide the following advantages: no
external synchronizing is necessary, external devices may run at any data
rate up to the processor's maximum I/O data rate, and because data signals
are furnished with guard signals the external devices are often relieved of the
necessity of latching information such as memory address.

MEMORY READ TIMING
The following signals are involved in the processor's memory read

sequence, as shown in Figure 10.
OPREQ 	 = Operation Request
DBUSO-DBUS7* 	 = Data Bus
ADRO-ADR12 	 = Address Bus
ADR13 	 = Address bit 13
ADR14 	 = Address bit 14
M/IO 	 = Memory/Input-Output
R/W
	 = Read/Write

OPACK* 	 = Operation Acknowledge

The signals marked with an asterisk are sent from the memory device to
the processor. The other signals are developed by the processor.

OPREQ is a guard signal which must be valid (high) for the other signals
to have meaning. When reading main memory the 2650 simultaneously
switches OPREQ to a high state, M/IO to M (memory), R/W to ft (Read),
and places the memory address on lines ADRO-ADR14. Remember that

CLOCK

2650 OUTPUTS-

OPREQ

ADRO-ADR 14

MEMORY/I0

READ/WRITE

FROM ACCESSED MEMORY:

OPACK

DATA IN

NOTES: 	OPACK must go low at least 100 nS before the trailing edge of T2 in order not to slow down the 2650.

I21 DATA IN signals must be valid for 50nS after the trailing edge of OPR EQ.

IS) Allowable memory access time is 1as with 2.40 cycle time.

Figure 10. MEMORY READ SEQUENCE

35

Tl 	 T2 TO

INTERNAL INTERNAL

DELAY - 500nS DELAY - 500nS

CONTROL OUTPUTS. DATA

ALID AND ADDRESS

300nS

' 600

AT 2 gh_SEC
CYCLE TIM

2600 CYCLE TIME

3 CLOCK PERIODS = 2 AUSEC MINIMUM

TO

CLOCK

2550 OUTPUTS:

OPREO

ADRO-ADRIe

MEMORYA-12

Arif5NYRITE

DROSS-DEWS

WRP

FROM ACCESSED
MEMORY:

OPACK

ADR13 & ADR14 are multiplexed with other signals and must be logically
ANDed with OPREQ and M to be interpreted. Of course, ADR13 & ADR14
may be ignored if only page zero (8,192 bytes) is used.

Once the memory logic has determined the simultaneous existance of the
signals mentioned above, it places the true data corresponding to the given
address location on the data bus (DBUSO to DBUS7), and returns an OPACK
signal to the processor. The processor, recognizing the OPACK, strobes the
data into the receiving register and lowers the OPREQ. This completes the
memory read sequence.

If the OPACK signal is delayed by the memory device, the processor waits
until it is received. OPREQ is lowered only after the receipt of OPACK. The
memory device should raise OPACK after OPREQ falls.

MEMORY WRITE TIMING
The signals involved with the processor's memory write sequence are

similar to those used in the memory read sequence with the following
exceptions: 1) the R/W signal is in the W state and, 2) the WRP signal
provides a positive going pulse during the write sequence which may be used
as a chip enable, write pulse, etc.

Figure 11 demonstrates the signals that occur during a memory write.

NOTES 	11 OrnlirelL ns 55 go low at least 100MS before the trailing edge of T2 in ceder not to sloes down the 2650.

Figure 11. MEMORY WRITE SEQUENCE

INPUT/OUTPUT TIMING
The signal exchanges for I/O with external devices is very similar to the

signaling for memory read/write. See the Features Section, INPUT/OUT
PUT FACILITIES .

CRITICAL. TIMES
Figure 9 describes the timing relationship between the various interface

signals. The critical times are labeled and defined in the table of AC
characteristics.

36

ELECTRICAL CHARACTERISTICS

PRELIMINARY AC CHARACTERISTICS
TA=o°c to 70°C Vcc=5V±5% unless otherwise specified, see notes 1,2,3 & 4.

SYMBOL PARAMETER
LIMITS

UNITS
MIN MAX

tCH Clock High Phase 400 10,000 nsec

tCL Clock Low Phase 400 .0 nsec

t cp Clock Period 800 .. nsec

t pc6 Processor Cycle Time 2,400 cc nsec

t OR OPREQ Pulse Width 2tcH + tcL —100 co nsec

tCOR Clock to OPREQ Time 100 700 nsec

tOAD7 OPACK Delay Time 0 .0 nsec

tOAH OPACK Hold Time 0 .0 nsec

tCSA Control Signal Available 50 nsec

tDOA Data Out Available 50 nsec

t DID8 Data in Delay 0 1000(8) nsec

t DiFi9 Data in Hold 150 nsec

twpD Write Pulse Delay t CL-100 tCL-50 nsec

twpw Write Pulse Width tCL tCL nsec

tABD Address Bus Delay 80 nsec

tDBD Data Bus Delay 120 nsec

tiRS1° INTREQ Set up Time 0 nsec

tiRFil° INTREQ Hold Time 0 nsec

t oRT5 Output Buffer Rise Time 150 nsec

NOTES ON AC CHARACTERISTICS
1. See preceding timing diagrams for definition of timing terms.
2. Input levels swing between 0.65 volt and 2.2 volts.
3. Input signal transition times are 2Ons.
4. Timing reference level is 1.5 volts.
5. Load is -100pA at 20pF.
6. A Processor Cycle time consists of three clock periods.
7. In order to avoid slowing down the processor, OPACK must be lowered 100ns before the trailing edge of

T2 clock, if OPACK is delayed past this point, the processor will wait in the T2 state and sample ()PACK
on each subsequent negative clock edge until OPACK is lowered.

8. In order to avoid slowing the processor down, input data must be returned to the processor in 11.is or
less time from the OPREQ edge, at a cycle time of 2.4/../s.

9. Input data must be held until 5Ons after OPREQ falls.
10. In order to interrupt the current instruction, INTREQ must fall prior to the first clock of the last cycle

of the current instruction. INTREQ must remain low until INTACK goes high.

37

Operating Ambient Temperature

Storage Temperature

All Input, Output, and Supply Voltages

with respect to ground pin(3)

Package Power Dissipation(2)=IWPkg.

0°C to +70°C

-65°C to+ 150°C

-0.5V to +6V

1.6W

MAXIMUM GUARANTEED RATINGS(1)

PRELIMINARY 2650 DC ELECTRICAL CHARACTERISTICS

LIMITS

SYMBOL PARAMETER TEST CONDITIONS MIN MAX UNIT

ILI Input Load Current VIN = 0 to 5.25V 10 µA

I LOH Output Leakage Current ADREN, DBUSEN = 2.2V, VOUT = 4V 10 µA

ILOL Output Leakage Current ADREN, DBUSEN = 2.2V, VOUT = 0.45V 10 µA

ICC Power Supply Current VCC = 5.25V, TA = 0°C 100 mA

VIL Input Low -0.6 0.8 V

VIH Input High 2.2 VCC V

VOL Output Low IOL = 1.6 mA 0.0 0.45 V

VOH Output High IOH = -100 µA 2.4 VCC-31.5 V

CIN Input Capacitance VIN = OV 10 pF

COUT Output Capacitance VOUT = OV 10 pF

Conditions: TA = 0° C to 70° C, VCC = 5V ±5%

NOTES:

1. Stresses above those listed under "Maximum Guaranteed Ratings" may cause permanent damage to the device. This is a stress rating

only and functional operation of the device at these or at any other condition above those indicated in the operation sections of this

specification is not implied.

2. For operating at elevated temperatures the device must be derated based on a +150°C maximum junction temperature and a thermal

resistance of 500C/VV junction to ambient (40 pin IW package).

3. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive

static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.

4. Parameter valid over operating temperature range unless otherwise specified.

5. All voltage measurements are referenced to ground.

6. Manufacturer reserves the right to make design and process changes and improvements.

7. Typical values are at +250C, nominal supply voltages, and nominal processing parameters.

INTERFACE SIGNALS

TYPE PINS ABBREVIATION FUNCTION SIGNAL SENSE

INPUT 1 GND Ground GND=0
INPUT 1 Vcc +5 Volts =5% Vcc=1

INPUT 1 RESET Chip Reset RESET=1 Ipulse), causes reset
INPUT 1 CLOCK Chip Clock

INPUT 1 PAUSE Temp. Halt execution PAUSE=O, temporarily halts execution

INPUT 1 INTREQ Interrupt Request INTR EQ=0, requests interrupt
INPUT 1 OPACK Operation Acknowledge OPACK=0, acknowledges operation

INPUT 1 SENSE Sense SENSE=0 (low) or SENSE=1 (high)
INPUT 1 ADREN Address Enable ADREN=1 drives into third state

INPUT 1 DBUSEN Data Bus Enable DBUSEN=1 drives into third state

IN/OUT 8 DBUSO-DBUS7 Data Bus DBUSn=0 (low), DBUSn=1 (high)

OUTPUT 13 ADRO-ADR12 Address 0 through 12 ADRn=0 (low), ADRn=1 (high)
OUTPUT 1 AD R 13 or E/NE Address 13 or

Extended/Non-Extended Non-Extended=0, Extended=1
OUTPUT 1 ADR14 or Die Address 14 or

Data Control Control=0, Data 1

OUTPUT 1 OPREO Operation Request OPREQ=1, requests operation

OUTPUT 1 Miff/ Memory/I0 10=0, M=1

OUTPUT 1 F1 /W Read/Write R=0, W=1

OUTPUT 1 FLAG Flag Output FLAG=1 (high), FLAG=0 (low)

OUTPUT 1 INTACK Interrupt Acknowledge INTACK=1, acknowledges interrupt
OUTPUT 1 RUN/WAIT Run/Wait Indicator RUN=1, WAIT=0

OUTPUT 1 WRP Write Pulse WRP=1 (pulse), causes writing

PIN CONFIGURATION

SENSE

ADR 12

ADR 11

ADR 10

1

2

3

4

40

39

38

37

FLAG

VCC

CLOCK

PAUSE

ADR 9 36 OPACK

ADR 8 6 35 RUN/WAIT

ADR 7 34 INTACK

ADR 6 8 33 DBUS 0

ADR 5 9 2650 32 Doug 1

ADR 4 10 31 DBUS 2

ADR3 30 DBUS 3

ADR 2 12 29 DBUS 4

ADR 1 13 28 DBUS 5

ADR 0 14 27 DBUS 6

ADREN 15 26 DBUS 7

RESET 16 25 DBUSEN

INTREQ 17 24 OPREQ

AOR 14-0/E 18 23

ADR 13-E/NE 19 22 WRP

M/16 20 21 GND

TOP VIEW

39

An

FEATURES

INPUT/OUTPUT FACILITIES

The 2650 processor provides several mechanisms for performing input/
output functions. They are flag and sense, non-extended I/O instructions,
extended I/O instructions, and memory I/O. These four facilities are
described below.

FLAG & SENSE I/O
The 2650 has the ability to directly output one bit of data without

additional address decoding or synchronizing signals.

The bit labeled "Flag" in the Program Status Word is connected through a
TTL compatible driver to the chip output at pin #40. The Flag output always
reflects the value in the Flag bit.

When a program changes the Flag bit through execution of an LPSU,
PPSU, or CPSU, the bit will be set or cleared during the last cycle of the
instruction that changes it.

The Flag bit may be used conveniently for many different purposes. The
following is a list of some possible uses:
1. A serial output channel
2. An additional address bit to increase addressing range.
3. A switch or toggle output to control external logic.
4. The origin of a pulse for polling chains of devices.

The Sense bit performs the complementary function of the Flag and is a
single bit direct input to the 2650. The Sense input, pin #1 is connected to a
TTL compatible receiver and is then routed directly to a bit position in the
Program Status Word. The bit in the PSW always represents the value of the
external signal. It may be sampled anytime through use of the TPSU or
SPSU instructions.

This simple input to the processor may be used in many ways. The
following is a list of some possible uses:
1. A serial input channel
2. A sense switch input
3. A break signal to a processing program
4. An input for yes/no signaling from external devices.

NON-EXTENDED I/O
There are four one byte I/O instructions; REDC, REDD, WRTC, and

WRTD. They are all referred to as non-extended because they can
communicate only one byte of data, either into or out of the 2650.

REDC and REDD causes the input transfer of one byte of data. They are
identical except for the fact that the D/C Signal is in the D state for REDD
and in the C state for REDC. Similarly, the instructions WRTC and WRTD
cause an output transfer of one byte of data. The D/C line discrim-
inates between the two pairs of input/output instructions. The D/C line
can be used as a 1-bit device address in simple systems.

The read and write timing sequences for the one byte I/O instructions are
the same as the memory read and write sequences with the following
exceptions: the M/IO signal is switched to JO, the D/C line becomes valid,
E/NE is switched to NE (non-extended), and the Address bus contains no
valid information.

41

The NE signal informs the devices outside the 2650 that a one byte I/O
instruction is being executed. The D/C line indicates which pair of the one
byte I/O instructions are being executed; D implies either WRTD or REDD,
and C implies either WRTC or REDC. Finally, to determine whether it is a
read or a write, examine the R/W signal level.

Table 6 illustrates the sense of the interface signals. The "Signal Timing"
section should be referenced for the exact timing relationships. It should
be remembered that the control signals are not to be considered valid ex-
cept when the OPREQ signal is valid.

TABLE 6. I/O INTERFACE SIGNALS

OPREQ Miro I R/W ADR13-E/NE ADR14-DIC

MEMORY READ T M W ADR13 ADR14

MEMORY WRITE T M W ADR13 ADR14

2 BYTE READ T 16 R E Don't Care

2 BYTE WRITE T 10 W E Don't Care

1 BYTE CONTROL READ T FO Ti NE

1 BYTE CONTROL WRITE T la W NE f

1 BYTE DATA READ T Fa 1--- NE D

1 BYTE DATA READ T fel W NE D

EXTENDED I/O
There are two, two byte I/O instructions; REDE and WRTE. They are

referred to as extended because they can communicate two bytes of data
when they are executed. The REDE causes the second byte of the
instruction to be output on the low order address lines, ADRO-ADR7, which
is intended to be used as a device address while the byte of data then on the
Data Bus will be strobed into the register specified in the instruction. The
WRTE also presents the second byte of the instruction on the Address Bus,
but a byte of data from the register specified in the instruction is
simultaneously output on the Data Bus.

The two byte I/O instructions are similar to the one byte I/O instructions
except: the D/C line is not considered, and the data from the second byte of
the I/O instruction appears on the Address Bus all during the time that
OPREQ is valid. The data on the Address Bus is intended to convey a device
address, but may be utilized for any purpose.

Table 6 illustrates the sense of the interface signals for extended I/O in-
structions. Refer to "Signal Timing" section for exact timing relationships.

MEMORY I/O
The 2650 user may choose to transfer data into or out of the processor

using the memory control signals. The advantage to this technique is that the
data can be read or written by the program through ordinary instruction
execution and data may be directly operated upon with the arithmetic
instructions.

To make use of this technique, the designer has to assign memory
addresses to devices and design the device interfaces to generate the same
signals as memory.

A disadvantage to this method is that it may be necessary to decode more
address lines to determine the device address than with other I/O facilities.

42

INTERRUPT MECHANISM

The 2650 has been implemented with a conventional, single level, address
vectoring interrupt mechanism. There is one interrupt input pin. When an
external device generates an interrupt signal (INTREQ), the processor is
forced to transfer control to any of 128 possible memory locations as
determined by an 8-bit vector supplied by the interrupting device.

Of special interest is that the device may return a relative indirect address
signal which causes the processor to enter an indirect addressing sequence
upon receipt of an interrupt. This enables a device to direct the processor to
execute code anywhere within addressable memory.

Upon recognizing the interrupt signal, the processor automatically sets the
Interrupt Inhibit bit in the Program Status Word. This inhibits further
interrupts from being recognized until the interrupt routine is finished
executing and a Return-and-Enable instruction is executed or the inhibit bit
is explicitly cleared.

When the inhibit bit in the PSW is set, the processor will not recognize an
interrupt input. The Interrupt Inhibit bit may be set under program control
(LPSU, PPSU) and is automatically set whenever the processor accepts an
interrupt. The inhibit bit may be cleared in three ways:
1. By a RESET operation
2. By execution of an appropriate clear or load PSU instruction; (CPSU, LPSU)
3. By execution of a Return-and-Enable instruction.

The sequence of events for a normal interrupt operation is as follows:
1. An executing program enables interrupts.
2. External device initiates interrupt with the INTREQ line.
3. Processor finishes executing current instruction.
4. Processor sets inhibit bit.
5. Processor inserts the first byte of ZBSR (Zero Branch-to-Subroutine, Relative)

instruction into the instruction register instead of what would have been the next
sequential instruction.

6. Processor accesses the data bus to fetch the second byte of the ZBSR instruction.
7. Interrupting device responds to the Processor generated INTACK (Interrupt Acknow-

ledge) by supplying the requested second byte.
8. The processor executes the Zero Branch-to-Subroutine instruction, saving the address

of the instruction following the interrupted instruction in the RAS, and proceeds to
execute the instruction at page 0, byte 0, or the address relative to page 0, byte 0 as
given by the interrupting device.

9. When the interrupt routine is complete, a return instruction (RETC, RETE) pulls the
address from the RAS and execution of the interrupted program resumes.

Since the interrupting device specifies the interrupt subroutine address in
the standard relative address format, it has considerable flexibility with
regard to the interrupt procedure. It can point to any location that is within
+63 or —64 bytes of page zero, byte zero of memory. (Negative relative
addresses wrap around the memory, modulo 8,19210 bytes.) The inter-
rupting device also may specify whether the subroutine address is direct or
indirect by providing a zero or one to DBUS #7 (pin #26). If the external
device is not complex enough to exercise these options, it may respond to
the INTACK operation with a byte of all zeroes. In such a case, the
processor will execute a direct Branch-to-Subroutine to page zero, byte zero
of memory.

43

The timing diagram in Figure 12 will help explain how the interrupt
system works in the processor. The execution of the instruction labeled "A"
has been proceeding before the start of this diagram. The last cycle of
instruction "A" is shown. Notice that, as in all external operations, the
OPREQ output eventually causes an OPACK input, which in turn allows
OPREQ to be turned off. The arrows show this sequence of events. The last
cycle of instruction "A" fetches the first byte of instruction "B" from
Memory and inserts it into the Instruction Register.

Assume that instruction "B" is a two cycle, two byte instruction with no
operand fetch (e.g., ADDI). Since the first byte has already been fetched by
instruction "A", the first cycle of instruction "B" is used to fetch the second
byte of instruction "B". Had instruction "B" not been interrupted, it would
have fetched the first byte of the next sequential instruction during its
second (last) cycle. The dotted lines indicate that operation.

Since instruction "B" is interrupted, however, the last cycle of "B" is used
to insert the interrupt instruction (ZBSR) into the instruction register.
Notice that the INTREQ input can arrive at any time. Instruction B is in-
terrupted since INTREQ occured prior to the last (2nd) cycle of execution.

Instead of being the next sequential instruction following "B", instruction
"C" is the completion of the interrupt. The first cycle of "C" is used to
fetch the second byte of the ZBSR instruction from the DBUS as provided
by the interrupting device. This fact is indicated by the presence of the
INTACK control signal. The INTREQ may then be removed. When the
device responds with the requested byte, it uses a standard operation
acknowledge procedure (OPACK) to so indicate to the processor. During the
second cycle of instruction "C" the processor executes the ZBSR instruction,
and fetches the first byte of instruction "D" which is located at the
subroutine address.

INST

-A 	
LAST CYCLE

INST 	 INST 	 INST

CYCLE 1 I CYCLE 2 	CYCLE 1 I CYCLE 2 * CYCLE 1

OPREQ

OPACK

DBUS

1ST BYTE 2ND BYTE
INST B 	INST B

.* 	 1ST BYTE
INST D

INTREQ

INTACK

* PROCESSOR INSERTS 1ST BYTE OF ZBSR INSTRUCTION. ADDRESS
OF 1ST BYTE OF !NSTC IS PUSHED INTO RETURN ADDRESS STACK.

** 2ND BYTE OF ZBSR (INTERRUPT VECTOR)

Figure 12. INTERRUPT TIMING

44

SUBROUTINE LINKAGE

The on-chip stack, along with the Branch-to-Subroutine and Return
instructions provide the facility to transfer control to a subroutine. The
subroutine can return control to the program that branched to it via a
Return instruction.

The stack is eight levels deep which means that a routine may branch to a
subroutine, which may branch to another subroutine, etc., eight times before
any Return instructions are executed.

When designing a system that utilizes interrupts, it should be remembered
that the processor jams a ZBSR into the IR and then executes it. This will
cause an entry to be pushed into the on-chip stack like any other
Branch-to-Subroutine instruction and may limit the stack depth available in
certain programs.

When branching to a subroutine, the following sequence of events occurs:
1. The address in the JAR is used to fetch the Branch-to-Subroutine instruction and is

then incremented in the Address Adder so that it points to the instruction following
the subroutine branch.

2. The Stack Pointer is incremented by one so that it points to the next Return Address
Stack location.

3. The contents of the JAR are stored in the stack at the location designated by the Stack
Pointer.

4. The operand address contained in the Branch-to-Subroutine instruction (the address of
the first instruction of the subroutine) is inserted into the JAR.

When returning from a subroutine, this sequence of events occurs:
1. The address in the JAR is used to fetch the return (RETC, RETE) instruction from

memory.
2. When the return instruction is recognized by the processor, the contents of the stack

entry pointed to by the Stack Pointer is placed into the IAR.
3. The Stack Pointer is decremented by one.
4. Instruction execution continues at the address now in the IAR.

CONDITION CODE USAGE

The two-bit register, called the Condition Code, is incorporated in the
Program Status Word. It may be seen in the description of the 2650
instructions, that the Condition Code (CC) is specifically set by every
instruction that causes data to be transferred into a general purpose register
and it is also set by compare instructions.

The reason for this design feature is that after an instruction executes, the
CC contains a modest amount of information about the byte of data which
has just been manipulated. For example, a program loads register one with a
byte of unknown data and the Condition Code setting indicates that the
byte is positive, negative or zero. The negative indication implies that bit #7
is set to one.

Consequently, a data manipulation operation when followed by a
conditional branch is often sufficient to determine desired information
without resorting to a specific test, thus saving instructions and memory
space.

45

In the following example, the Condition Code is used to test the parity of
a byte of data which is stored at symbolic memory location CHAR.

EQ EQU 0 THE EQUAL CONDITION CODE
CHAR DATA 2 UNKNOWN DATA BYTE
WC EQU H'04' THE WITH CARRY BIT
NEG EQU 2 CC MASK

CPSL WC CLEAR CARRY BIT
LODI,R2 —8 SET UP COUNTER
SUBZ un CLEAR REG 0
LODR,R1 CHAR GET THE CHARACTER (cc is set)

LOOP BCFR,NEG GO1 IF NOT SET, DON'T COUNT (cc is
tested)

ADDI,R0 +1 COUNT THE BIT
GO1 RRL,R1 MOVE BITS LEFT (cc is set)

BIRR,R2 LOOP LOOP TILL DONE

FINISHED,TEST IF REG 0 HAS A ONE IN LOW ORDER
IF BIT #0 = 1, ODD PARITY. IF BIT #0 = 0, THEN EVEN.

TMI,R0 	F11011
BCTR,EQ ODD

EVEN HALT
ODD HALT

START-UP PROCEDURE

The 2650 processor, having no internal start-up procedure must be started
in an orderly fashion to assure that the internal control logic begins in a
known state.

Assuming power is applied to the chip and the clock input is running, the
easiest way to start is to apply a Reset signal for at least three clock periods.
When the RESET signal is removed the processor will fetch the instruction at
page 0, byte 0 and commence ordinary instruction execution.

To start processing at a specific address, a more complex start-up proce-
dure may be employed. If an Interrupt signal is applied initially along
with the Reset, processing will commence at the address provided by the
interrupting device. Recall that the address provided may include a bit to
specify indirect addressing and therefore the first instruction executed may
be anywhere within addressable memory. The Reset and Interrupt signal
may be applied simultaneously and when the Reset is removed, the processor
will execute the usual interrupt signal sequence as described in INTERRUPT
MECHANISM. There is an example of a start-up technique in the System
Application Notes.

46

INSTRUCTIONS

ADDRESSING MODES

An addressing mode is a method the processor uses for developing
argument addresses for machine instructions.

The 2650 processor can develop addresses in eight ways:
• Register addressing
• Immediate addressing
• Relative addressing
• Relative, indirect addressing
• Absolute addressing
• Absolute, indirect addressing
• Absolute, indexed addressing
• Absolute, indirect, indexed addressing

However, of these eight addressing modes, only four of them are basic.
The others are variations due to indexing and indirection. The basic
addressing mode of each instruction is indicated in parentheses in the first
line of each detailed instruction description. The following text describes
how effective addresses are developed by the processor.

REGISTER ADDRESSING
All register-to-register instructions are one byte in length. Instructions

utilizing this addressing mode appear in this general format.

Operation Code Register

7 6 5 4 3 2 1 0

Since there are only two bits designated to specify a register, register zero
always contains one of the operands while the other operand is in one of the
three registers in the currently selected bank. Register zero may also be
specified as the explicit operand giving instructions such as: LODZ 	RO.

In one byte register addressing instructions which have just one operand,
any of the currently selected general purpose registers or register zero may
be specified, e.g., RRL,RO.

IMMEDIATE ADDRESSING
All immediate addressing instructions are two bytes in length. The first

byte contains the operation code and register designation, while the second
byte contains data used as the argument during instruction execution.

47

Two's complement binary number
Operation Code Register 	or 8-bit logic mask

I

7 6 5 4 3 2 1 0
Byte 0

7 6 5 4 3 2 1 0
Byte 1

The second byte, the data byte, may contain a binary number or a logic
mask depending on the particular instruction being executed. Any register
may be designated in the first byte.

RELATIVE ADDRESSING

Relative addressing instructions are all two bytes in length and are
memory reference instructions.One argument of the instruction is a register
and the other argument is the contents of a memory location. The format of
relative addressing instructions is:

Operation Code Register I Relative Displacement

7 6 5 4 3 2 1 0
Byte 0

7 6 5 4 3 2 1 0
Byte 1

The first byte contains the operation code and register designation, while
the second byte contains the relative address. Bits 0-6, byte 1, contain a 7-
bit two's complement binary number which can range from -64 to +63. This
number is used by the processor to calculate the effective address. The
effective address is calculated by adding the address of the first byte
following a relative addressing instruction to the relative displacement in the
second byte of the instruction.

If bit 7, byte 1 is set to "1", the processor will enter an indirect addressing
cycle, where the actual operand address will be accessed from the effective
address location. See Indirect Addressing.

Two of the branch instructions (ZBSR, ZBRR) allow addressing relative
to page zero, byte 0 of memory. In this case, values up to +63 reference the
first 63 bytes of page zero and values up to - 64 reference the last 64 bytes
of page zero.

ABSOLUTE ADDRESSING FOR NON- BRANCH INSTRUCTIONS

Absolute addressing instructions are all three bytes in length and are
memory reference instructions. One argument of the instruction is a register,
designated in bits 1 and 0, byte 0; the other argument is the contents of a
memory location. The format of absolute addressing instructions is:

Index

Register

or

Argument Index High-Order
Operation Code Register I Control Address Low-Order Address

7 6 5 4 3 2 1 0

Byte 0

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 2

Bits 4-0, byte 1 and 7-0, byte 2 contain the absolute address and can
address any byte within the same page that the instruction appears.

48

The index control bits, bits #6 and #5, byte 1 determine how the
effective address will be calculated and possibly which register will be the
argument during instruction execution. The index control bits have the
following interpretation:

Index Control

Bit 6 	Bit 5
	

Meaning

0 0 Non-indexed address

0 1 Indexed with auto-increment

1 0 Indexed with auto-decrement

1 1 Indexed only

When the index control bits are 0 & 0, bits #1 and #0 in byte 0 contain
the argument register designation and bits 0 to 4, byte 1 and bits 0 to 7, byte
2 contain the effective address. Indirect addressing may be specified by
setting bit #7, byte 1 to a one.

When the index control bits are 1 & 1, bits #1 and #0 in byte 0 designate
the index register and the argument register implicitly becomes register zero.
The effective address is calculated by adding the contents of the index
register (8-bit absolute integer) to the address field. If indirect addressing is
specified, the indirect address is accessed and then the value in the index
register is added to the indirect address. This is commonly called post
indexing.

When the index control bits contain 0 & 1, the address is calculated by the
processor exactly as when the control bits contain 1 & 1 except a binary 1 is
added to the contents of the selected index register before the calculation of
the effective address proceeds. Similarly, when the index control bits contain
1 & 0, a binary 1 is subtracted from the contents of the selected index register
before the effective address is calculated.

ABSOLUTE ADDRESSING FOR BRANCH INSTRUCTIONS
The three byte, absolute addressing, branch instructions deviate slightly in

format from ordinary absolute addressing instructions as shown below:

Register
or
Condition
Code

Operation Code Mask 	I High-Order Addressing Low-Order Addressing
\ / 	 •

7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Byte 0
	

Byte 1 	 Byte 2

The notable difference is that bits 6 and 5, byte 1, are no longer
interpreted as Index Control bits, but instead are interpreted as the high
order bits of the address field. This means that there is no indexing allowed
on most absolute addressing branch instructions, but indexed branches are
possible through use of the BXA and BSXA instructions. The bits #6 and
#5, byte 1, are used to set the current page register, thus enabling programs
to directly transfer control to another page.

See the MEMORY ORGANIZATION, BXA and BSXA instructions, and
INDIRECT ADDRESSING.

49

INDIRECT ADDRESSING
Indirect addressing means that the argument address of an instruction is

not specified by the instruction itself, but rather the argument address will
be found in the two bytes pointed to by the address field or relative address
field, of absolute or relative addressing instructions. In the case of absolute
addressing, the value of the index register is added to the indirect address not
to the value in the address field of the instruction. In both cases, the
processor will enter the indirect addressing state when the bit designated
"I" is set to one. Entering the indirect addressing sequence adds two cycles
(6 clock periods) to the execution time of an instruction.

Indirect addresses are 15-bit addresses stored right justified in two
contiguous bytes of memory. As such, an indirect address may specify any
location in addressable memory (0-32,767). The high order bit of the two
byte indirect address is not used by the processor.

Only single level indirect addressing is implemented. The following
examples demonstrate indirect addressing.
Example 1.

0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 LODA,R2 *H'51'

ACON 	H'128'

DATA 	H' 67'

Address 1016 1 1 1 6 1216

l0000000ll loololoo oi

Address

Address

51 16 5216

10 1 1 0 0 1 1

12816

The LODA instruction in memory locations 10, 11, and 12 specifies
indirect addressing (bit 7, byte 1, is set). Therefore, when the instruction is
executed, the processor takes the address field value, H' 51', and uses it to
access the two byte indirect address at 51 and 52. Then using the contents of
51 and 52 as the effective address, the data byte containing H' 67' is loaded
into register 2.
Example 2.

LODR,R2 0 0 0 0 1 0 1 	0' 1 0 0 0 0 1 0 1

Address 1016 1116

0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 ACON H'128'

Address 1716 1 816

0 	1 	1 0 0 1 1 1 DATA H'67'

Address 12816

In a fashion similar to the previous example, the relative address is used to
access the indirect address which points to the data byte. When the LODR
instruction is executed, the data byte contents, H' 67', will be loaded into
register 2.

INSTRUCTIONS FORMAT EXCEPTIONS
There are several instructions which are detected by decoding the entire 8

bits of the first byte of the instruction. These instructions are unique and
may be noticed in the instruction descriptions. Examples are: HALT, CPSU,
CPSL.

50

Of this type of instruction, two operation codes were taken from
otherwise complete sets thus eliminating certain possible operations. The
cases are as follows:

(NOT OKAY) STRZ 0
(OKAY) 	NOP

(NOT OKAY) ANDZ 0
(OKAY) 	HALT

Storing register zero into register zero is not imple-
- mented, the operation code is used for NOP (no

operation).

— AND of register zero with register zero is not im-
plemented, the operation code is used for HALT.

OPERATION CODE RN

0 7 	6 	5 	4 	3 	2 	1

RELATIVE D SPLACEMENT
I 	-644DISPLACEMENT6,63

2 7 	6 	5 	4 	3

OPERATION CODE

3 2 0 7 	6 	5 	4

15 	14 	13 	12 	11 	10

OPERATION CODE

0

'INDEX
R/X 	 I 	CONTROL 	HIGHER ORDER ADDRESS

DATA MASK OR BINARY VALUE

LOWER ORDER ADDRESS

9 	8

R/V

15 14 13 12 11 10 9

OPERATION CODE

SYMBOLS:

R- REGISTER NUMBER
V- VALUE OR CONDITION
X - INDEX REGISTER NUMBER
I - INDIRECT BIT

(A) ABSOLUTE
ADDRESSING
(NON-BRANCH
INSTRUCTIONS)

(B) ABSOLUTE
ADDRESSING
(BRANCH
INSTRUCTIONS)

INDIRECT
ADDRESSING

/-1-\

23 	22 	21 	20 	19 	18 	17 	16

OPERATION CODE 	 R/V

15 14 	13 	12 	11 	10 	9 	8
HIGHER ORDER ADDRESS

7 	6 	 4 	3 	2

LOWER ORDER ADDRESS PAGE

•

UNUSED

23

/-"\

22 	21 	20 	19 	18 	17 	16
HIGHER ORDER ADDRESS

15 	14 	13 	12 	11 	10 	9 	8

LOWER ORDER ADDRESS

6 	5 	4 	3 	2

PAGE

15 	14 	13 	12 	11 	10 	9 7 	6 	5 	4 	3 	2

(Z) REGISTER
ADDRESSING

(I) IMMEDIATE
ADDRESSING

(R) RELATIVE
ADDRESSING

•INDEX CONTROL:

00 = NON-INDEXED
01 = INDEXED WITH AUTO-INCREMENT
10= INDEXED WITH AUTO-DECREMENT
11 = INDEXED ONLY (E) MISCELLANEOUS

INSTRUCTIONS

51

OPERATION CODE

•

7 6 5 4 3 2
	

0

Figure 13. INSTRUCTION FORMATS

DETAILED PROCESSOR INSTRUCTIONS

LOAD REGISTER ZERO
	

(Register Addressing)

Mnemonic
	

LODZ

Binary Coding

0 010101010
	

r

7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description

This one-byte instruction transfers the contents of the specified register, r,
into register zero. The previous contents of register zero are lost. The
contents of register r remain unchanged.

When the specified register, r, equals 0, the operation code is changed to 6016
by the assembler. The instruction, 00000000, yields indeterminate results.

Processor Registers Affected 	 CC

Condition Code Setting 	 Register Zero CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

LOAD IMMEDIATE (Immediate Addressing)

Mnemonic LODI,r v

Binary Coding

I I I I 1 I I
0 0 0 0 0 1 r

7 6 5 4 3 2 1 	0 7 6 5 4 3 2 1 0
Execution Time 	2 cycles (6 clock periods)

Description

This two-byte instruction transfers the second byte of the instruction, v,
into the specified register, r. The previous contents of r are lost.
Processor Registers Affected 	 CC

Condition Code Setting 	 Register r CC1 CCO

Positive 0 1

Zero 0 0
Negative 1 0

59

LOAD RELATIVE
	

(Relative Addressing)

Mnemonic
	

LODR,r
	

(*)a

Binary Coding

0 0 0 0 1 0 r

a

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte instruction transfers a byte of data from memory into the
specified register, r. The data byte is found at the effective address formed
by the addition of the a field and the address of the byte following this
instruction. The previous contents of register r are lost. Indirect addressing
may be specified.

Processor Registers Affected 	 CC

Condition Code Setting

Register r 	CC1 	CCO

Positive 	 0 	1

Zero 	 0 	0

Negative 	1 	0

LOAD ABSOLUTE
	

(Absolute Addressing)

Mnemonic
	

LODA,r
	

(*)a(,X)

Binary Coding

53

0 0 0 0 1 1 r or X IC
	

a high order
11

a low order

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0

Execution Time 	4 cycles (12 clock periods)

Description

This three-byte instruction transfers a byte of data from memory into the
specified register, r. The data byte is found at the effective address. If
indexing is specified, bits 1 and 0, byte 0, indicate the index register and the
destination of the operation implicitly becomes register zero. The previous
contents of register r are lost.

Indirect addressing and/or indexing may be specified.

Processor Registers Affected 	 CC

Condition Code Setting 	 Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

STORE REGISTER ZERO
	

(Register Addressing)

Mnemonic
	

STRZ

Binary Code

1 1 0 01 o 0
	

r

7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description

This one-byte instruction transfers the contents of register zero into the
specified register r. The previous contents of register r are lost. The contents
of register zero remain unchanged.
Note: Register r may not be specified as zero. This operation code,
`11000000', is reserved for NOP.
Processor Registers Affected 	 CC

Condition Code Setting Register r 	CC1 	CCO

Positive 	 0 	1

Zero 	 0 	0

Negative 	 1 	0

STORE RELATIVE
	

(Relative Addressing)

Mnemonic
	

STRR,r

Binary Code

g4

1 1 0 0 1 0
	

r

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte instruction transfers a byte of data from the specified
register, r, into the byte of memory pointed to by the effective address. The
contents of register r remain unchanged and the contents of the memory
byte are replaced.

Indirect addressing may be specified.
Processor Registers Affected 	 None

Condition Code Setting 	 N/A

1 1 1 1 1 1 1 	i 	I 	I ! 	. r 1 . 	i 	1
1 0 1 0 1 	1 1 	1 1 ri I 	NIP a high order) I a Ipw.order.

5 4 3 2 1 0 7 	6 5 4 3 2 	1 	0 7 6 5 4 3 2 1 	0

I 	i
1 1 1 1

7 6

STORE ABSOLUTE 	 (Absolute Addressing)

Mnemonic 	STRA,r 	 (*)a(,X)

Binary Code

Execution Time 	4 cycles (12 clock periods)

Description

This three-byte instruction transfers a byte of data from the specified
register, r, into the byte of memory pointed to by the effective address. The
contents of register r remain unchanged and the contents of the memory
byte are replaced.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Processor Registers Affected 	 None

Condition Code Setting 	 N/A

ADD TO REGISTER ZERO
	

(Register Addressing)

Mnemonic ADDZ

Binary Code

1 0 0 0 0 0 r

7 	6 5 4 3 2 1 	0

Execution Time 	2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register, r,
and the contents of register zero to be added together in a true binary adder.
The 8-bit sum of the addition replaces the contents of register zero. The
contents of register r remain unchanged.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected 	 C, CC, I DC, OVF

Condition Code Setting 	 Register Zero CCI CCO

Positive 0 1

Zero 0 0

Negative 1 0

55

ADD IMMEDIATE (Immediate Addressing)

Mnemonic ADDI,r

Binary Coding

11111'1
1 0 0 0 0 1 r V

I 	I 	I 	I 	I 	I 	I

7 6 5 4 3 2 1 	0 7 	6 	5 4 3 2 	1 0

Execution Time 	2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of register r and the contents
of the second byte of this instruction to be added together in a true binary
adder. The eight-bit sum replaces the contents of register r.
Note: Add with Carry may be effected. See Carry bit.
Processor Registers Affected 	 C, CC, IDC, OVF

Condition Code Setting 	 Register r 	CC1 	CCO

Positive 	 0 	1

Zero 	 0 	0

Negative 	1 	0

ADD RELATIVE 	 (Relative Addressing)

Mnemonic
	

ADDR,r
	 (*)a

Binary Coding

1 0 0 0 1 0
	

r

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of register r and the contents
of the byte of memory pointed to by the effective address to be added to-
gether in a true binary adder. The eight-bit sum replaces the contents of
register r.

Indirect addressing may be specified.
Note: Add with Carry may be effected. See Carry bit.
Processor Registers Affected 	 C, CC, IDC, OVF

Condition Code Setting 	 Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

ADD ABSOLUTE 	 (Absolute Addressing)

Mnemonic 	ADDA,r 	 (*)a(,X)

Binary Coding

IIT 	II 	1 	t 	 I 	1!I 	

11 0101011 1 I 	I-, 	I I 	IC I a, hiph ,o rd.erl a low order
II 	I 	I 	I 	I

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	4 cycles (12 clock periods)

Description
This three-byte instruction causes the contents of register r and the

contents of the byte of memory pointed to by the effective address to be
added together in a true binary adder. The eight-bit sum replaces the
contents of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected 	 C, CC, I DC, OVF

Condition Code Setting 	 Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

SUBTRACT FROM REGISTER ZERO 	 (Register Addressing)

Mnemonic SUBZ

Binary Coding

1 0 1 0 0 0 r

7 6 5 4 3 2 1 	0

Execution Time 	2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to
be subtracted from the contents of register zero. The result of the subtraction
replaces the contents of register zero.

The subtraction is performed by taking the binary two's complement of
the contents of register r and adding that result to the contents of register
zero. The contents of register r remain unchanged.
Note: Subtract with Borrow may be effected. See Carry bit.
Processor Registers Affected

Condition Code Setting

C, CC, IDC, OVF

Register Zero 	CC1 	CCO

Positive 	 0 	1
Zero 	 0 	0

Negative 	1 	0

57

SUBTRACT IMMEDIATE
	

(Immediate Addressing)

Mnemonic
	

SUBI,r

Binary Code

1 0 1 0 0 1
	

r

I f I I
v
I I I

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the second byte of this
instruction to be subtracted from the contents of register r. The result of the
subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two's complement of
the contents of the second instruction byte and adding that result to the
contents of register r.
Note: Subtract with Borrow may be effected. See Carry bit.
Processor Registers Affected

Condition Code Setting

C, CC, IDC, OVF

Register r 	CC1 	CCO

Positive 	0 	1
Zero 	 0 	0
Negative 	1 	0

SUBTRACT RELATIVE 	 (Relative Addressing)

Mnemonic
	

SUBR,r
	

(*)a

Binary Code

1 0 1 0 1 0 r
I

a

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description
This two-byte instruction causes the contents of the byte of memory

pointed to by the effective address to be subtracted from the contents of
register r. The result of the subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two's complement of
the contents of the byte of memory and adding that result to the contents of
register r.

Indirect addressing may be specified.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected

Condition Code Setting

C, CC. !DC, OVF

Register r 	CC1 	CCO

FR

Positive 	0 	1

Zero 	 0 	0

Negative 	1 	0

SUBTRACT ABSOLUTE
	

(Absolute Addressing)

Mnemonic
	

SUBA,r
	

(*)a(,X)

Binary Code

	

i i ! I 	I 	I.
1 1 1 0 1 1 0 1 I 1 1 	ri 	1 	1 1 1 IC l a high order a low order I 	...I.,
7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Execution Time 	4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of the byte of memory
pointed to by the effective address to be subtracted from the contents of
register r. The result of the subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two's complement of
the contents of the memory byte and adding that result to the contents of
register r.

Indirect addressing andjor indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected

Condition Code Setting

C, CC, IDC, OVF

Register r 	CC1 	CCO

Positive 	 0 	1

Zero 	 0 	0

Negative 	1 	0

AND TO REGISTER ZERO
	

(Register Addressing)

Mnemonic
	

AN DZ
Binary Code

0 1 0 0 0 0 r

7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register, r,
to be logically ANDed with the contents of register zero. The result of the
operation replaces the contents of register zero. The contents of register r
remain unchanged.

The AND operation treats each bit of the argument bytes as in the truth
table below:

Bit (0-7) 	Bit (0-7) AND Result
0
	

0
	

0
0
	

1 	 0
1
	

1
1 	 0
	

0

Note: Register r may not be specified as zero. This operation code,
`01000000', is reserved for HALT.

Processor Registers Affected 	 CC

Condition Code Setting Register Zero 	CC 1 	CCO

Positive 	 0 	1
Zero 	 0 	0
Negative 	1 	0

59

Bit (0-7)

0
1
1
0

CC

AND Result
0
0
1
0

Register Zero 	CC1 	CCO

0

0

1

0
0
1
1

0

0

1 0

1
0

AND IMMEDIATE
	

(Immediate Addressing)

Mnemonic
	

AN DI,r

Binary Code

0 1 0 0 0 1
	

r

7 6 5 4 3 2 1 0

I 	I 	I 	1 	1 	1
V

1 	1 	1 	1

7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be logically ANDed with the contents of the second byte of this instruction.
The result of this operation replaces the contents of register r.

The AND operation treats each bit of the argument bytes as in the truth
table below:

Bit (0-7)

0
0
1
1

Processor Registers Affected

Condition Code Setting

Positive
	

0
	

1
Zero
	

0
	

0

Negative
	

1
	

0

AND RELATIVE
	

(Relative Addressing)

Mnemonic
	

AN DR,r
	

(*)a

Binary Code

0 1 0 0 1 0
	

r I I a

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be logically ANDed with the contents of the memory byte point ed to by the
effective address. The result of this operation replaces the contents of
register r.

The AND operation treats each bit of the argument bytes as
table below:

in the truth

Bit (0-7) 	Bit (0-7) AND Result
0
0
1
0

Processor Registers Affected 	 CC

Condition Code Setting 	 Register Zero 	CC1 	CCO

Positive

Zero

Negative

loll101011 11 	1 	iJ IC
	

a high order
li:. 	It
a low order

1111111

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of Register r to be logically
ANDed with the contents of memory byte pointed to by the effective
address. The result of the operation replaces the contents of register r.

The AND operation treats each bit of the argument bytes as in the truth
table below:

Bit (0-7) 	Bit (0-7)

0 	 0
0 	 1
1 	 1
1 	 0

AND Result

0
0
1
0

AND ABSOLUTE 	 (Absolute Addressing)

Mnemonic 	ANDA,r
	

(*)a(,X)

Binary Code

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Processor Registers Affected 	 CC

Condition Code Setting 	 Register Zero CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

INCLUSIVE OR TO REGISTER ZERO 	 (Register Addressing)

Mnemonic IORZ
Binary Code

0 1 1 0 0 0 r

7 	6 	5 	4 3 	2 1 	0
Execution Time 2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register, r,
to be logically Inclusive ORed with the contents of register zero. The result
of this operation replaces the contents of register zero. The contents of
register r remain unchanged.

The Inclusive OR operation treats each bit of the argument bytes as in the
truth table below:

Bit (0-7) Bit (0-7) Inclusive OR Result
0 0 0
0 1 1
1 1 1
1 0 1

Processor Registers Affected CC

Condition Code Setting Register Zero 	CC1 CCO

Positive 	 0 1

Zero 	 0 0

Negative 	1 0
61

INCLUSIVE OR IMMEDIATE
	

(Immediate Addressing)

Mnemonic IORI,r

Binary Code

I I I 1 1 1 1
0 1 1 0 0 1 r V

1 1 1 1 1 1

7 	6 	5 	4 	3 	2 1 	0 7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be logically Inclusive ORed with the contents of the second byte of this
instruction. The result of this operation replaces the contents of register r.

The Inclusive OR operation treats each bit of the argument bytes as in the
truth table below:

Bit (0-7) Bit (0-7) Inclusive OR Result
0 0

0 0 1
1 1 1
1 0 1

Processor Registers Affected CC

Condition Code Setting Register r 	CC1 CCO

Positive 	 0 1

Zero 	 0 0

Negative 	1 0

INCLUSIVE OR RELATIVE 	 (Relative Addressing)

Mnemonic
Binary Code

IORR,r (*)a

0 1 1 0 1 0 r I
1 1 I

a
I 	1

I

1

I
7 	6 5 4 3 2 1 	0 7 	6 	5 4 3 2 	1 0

Execution Time
	

3 cycles (9 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be logically Inclusive ORed with the contents of the memory byte pointed
to by the effective address. The result of this operation replaces the previous
contents of register r.

Indirect addressing may be specified.
The Inclusive OR operation treats each bit of the argument byte as in the

truth table below:

Bit (0-7) Bit (0-7) Inclusive OR Result
0 0 0

0 1 1
1 1
1 I

Processor Registers Affected CC

Condition Code Setting Register r 	CC1 CCO

Positive 	 0 1

Zero 	 0 0

Negative 	1 0

62

L111110 1 	1
I
	I 	

I 	
I 	I I, 	II a lhilhl-drl

I' 	'
7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

mil III
a low order
I 	I 	L 	1 	t 	I 	I

7 6 5 4 3 2 1 0

Execution Time 	4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r to be logically
Inclusive ORed with the contents of the memory byte pointed to by the
effective address. The result of the operation replaces the previous contents
of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

The Inclusive OR operation treats each bit of the argument bytes as in the
truth table below:

Bit (0-7) 	Bit (0-7)

0

0 	

0

1 	 1
1

Inclusive OR Result

0
1
1
1

INCLUSIVE OR ABSOLUTE 	 (Absolute Addressing)

Mnemonic

Binary Code

IORA,r 	 (*)a(,X)

Processor Registers Affected 	 CC

Condition Code Setting 	 Register Zero 	CC1 	CCO

Positive 	 0 	1

Zero 	 0 	0

Negative 	1 	0

EXCLUSIVE OR TO REGISTER ZERO 	 (Register Addressing)

Mnemonic EORZ
Binary Code

0 0 1 0 0 0 r

7 6 5 4 3 2 1 	0
Execution Time 2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of register zero. The result of
this operation replaces the contents of register zero. The contents of register
r remain unchanged.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) 	Bit (0-7)
0 	 0
0 	 1
1 	 1
1 	 0

Exclusive OR Result

1

0

Processor Registers Affected 	 CC

Condition Code Setting Register Zero 	CC1 	CCO

Positive 	 0 	1

Zero 	 0 	0

Negative 	1 	0

63

Processor Registers Affected

Condition Code Setting

CC

Register r

Positive

Zero

Negative

CC1 CCO

0 1

0 0

1 0

EXCLUSIVE OR IMMEDIATE 	 (Immediate Addressing)

Mnemonic
	

EORI,r 	 V

Binary Code

0 0 1 0 0 1
I 1111111

V

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of the second byte of this
instruction. The result of this operation replaces the previous contents of
register r.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) 	Bit (0-7)
0 	 0
0 	 1
1 	 1
1 	 0

Exclusive OR Result

0
1
0
1

EXCLUSIVE OR RELATIVE 	 (Relative Addressing)

Mnemonic
Binary Code

EORR,r (*)a

0 	0 1 0 1 0 r
I
I

I
I

l
a

i 	I 	I

I 	I 	I 	I

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0
Execution Time 	3 cycles (9 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of the memory byte pointed
to by the effective address. The result of this operation replaces the previous
contents of register r.

Indirect addressing may be specified.
The Exclusive OR operation treats each bit of the argument bytes as in

the truth table below:

Bit (0-7) 	Bit (0-7)
0 	 0
0
1 	 1
1 	 0

Exclusive OR Result
0
1
0
1

Processor Registers Affected

Condition Code Setting

CC

Register r 	CC1 	CCO

Positive 	 0 	1

Zero 	 0 	0

Negative 	1 	0

EXCLUSIVE OR ABSOLUTE 	 (Absolute Addressing)

Mnemonic

Binary Code

EORA,r (*)a(,X)

65

0 0 1 1 	1 	
ri 	I

7 6 5 4 3 2 1 0

I I I IC la high order,

7 6 5 4 3 2 1 0

a low order

7 6 5 4 3 2 1 0
Execution Time 	4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r to be
Exclusive ORed with the contents of the memory byte pointed to by the
effective address. The result of the operation replaces the previous contents
of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) 	 Bit (0-7) Exclusive OR Result

0 	 0

1 	 1
1

Processor Registers Affected

Condition Code Setting

CC

Register r CC1 CCO

Positive 	 0 	1

Zero 	 0 	0

Negative 	1 	0

COMPARE TO REGISTER ZERO 	 (Register Addressing)

Mnemonic
Binary Code

COMZ

1 1 1 0 0 0
	

r

0

1

0

7 6 5 4 3 2 1 0
Execution Time 	2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register r
to be compared to the contents of register zero. The comparison will be
performed in either "arithmetic" or "logical" mode depending on the setting
of the COM bit in the Program Status Word.

When COM=1 (logical mode) the values will be interpreted as 8-bit
positive binary numbers; when COM=0, the values will be interpreted as 8-bit
two's complement numbers.

The execution of this instruction only causes the Condition Code to be set
as in the following table.

Processor Registers Affected 	 CC

Condition Code Setting 	 CC1 CCO

Register zero greater than Register r 0 1

Register zero equal to Register r 0 0

Register zero less than Register r 1 0

COMPARE IMMEDIATE 	 (Immediate Addressing)

Mnemonic COMI,r

Binary Code

111 	1 0 0 1 r
IIIIIII

V
!III!

7 	6 	5 4 3 2 1 	0 7 	6 	5 	4 	3 	2 	1 	0

Execution Time 	2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be compared to the contents of the second byte of this instruction. The
comparison will be performed in either the "arithmetic" or "logical" mode
depending on the setting of the COM bit in the Program Status Word.

When COM=1 (logical mode), the values will be treated as 8-bit positive
binary numbers; when COM=0, the values will be treated as 8-bit two's
complement numbers.

The.execution of this instruction only causes the Condition Code to be set
as in the following table.

Processor Registers Affected 	 CC

Condition Code Setting 	 CC1 CCO

Register r greater than v 	 0 	1

Register r equal to v 	 0 	0

Register r less than v 	 1 	0

COMPARE RELATIVE 	 (Relative Addressing)

Mnemonic
	

COMR,r

Binary Code

R6

1 1 1 0 1 0

7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be compared to the contents of the memory byte pointed to by the effective
address. The comparison will be performed in either the "arithmetic" or
"logical" mode depending upon the setting of the COM bit in the Program
Status Word.

When COM=1 (logical mode), the values will be treated as 8-bit positive
binary numbers; when COM=0, the values will be treated as 8-bit, two's
complement numbers.

The execution of this instruction only causes the Condition Code to be set
as in the following table.
Processor Registers Affected 	 CC

Condition Code Setting 	 CC1 	CCO

Register r greater than memory byte 0 1

Register r equal to memory byte 0 0

Register r less than memory byte 1 0

COMPARE ABSOLUTE
	

(Absolute Addressing)

Mnemonic
	

COMA,r
	

(*)a(,X)
Binary Code

X
1 1 1 1 0 111

	

r I 	I I t ic 	a high order I

	

I 	111,11

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time
	

4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r to be
compared to the contents of the memory byte pointed to by the effective
address. The comparison will be performed in either the "arithmetic" or
"logical" mode depending on the setting of the COM bit in the Program
Status Word.

Where COM=1 (logical mode), the values will be treated as 8-bit, positive
binary numbers; when COM=0 (arithmetic mode), the values will be treated
as 8-bit, two's complement numbers.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

The execution of this instruction only causes the Condition Code to be set
as in the following table.
Processor Registers Affected 	 CC

Condition Code Setting 	 CC1 CCO

Register r greater than memory byte 0 1

Register r equal to memory byte 0 0

Register r less than memory byte 1 0

ROTATE REGISTER LEFT
	

(Register Addressing)

I
a !ow order

7 6 5 4 3 2 1 0

Mnemonic RRL,r
Binary Code

1 1 0 1 0 0 r

7 	6 5 4 3 2 1 	0
Execution Time 	2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register r to
be shifted left one bit. If the WC bit in the Program Status Word is set to
zero, bit #7 of register r flows into bit #0; if WC=1, then bit #7 flows into
the Carry bit and the Carry bit flows into bit #0.

Register bit #4 flows into the IDC if WC=1.

IDC (NOT CHANGED)

	 wc.0

6 5 4 3 2 1

11WC=1

DC

4V-,-1—`t

7 6 5 4 3 2 1 0

Note: Whenever a rotate causes bit #7 of the specified register to change
polarity, the OVF bit is set in the PSL.
Processor Registers Affected 	 C, CC, IDC, OVF
Condition Code Setting

	
Register r

Positive

Zero

Negative

CC1 CCO

0 1
0 0

1 0

67

ROTATE REGISTER RIGHT
	

(Register Addressing)

Mnemonic 	 RRR,r

Binary Code

0 1 0 1 0 0 r

7 	6 	5 	4 3 2 	1 	0

Execution Time 	2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to
be shifted right one bit. If the WC bit in the Program Status Word is set to
zero, bit #0 of the register r flows into bit #7; if WC=1, then bit #0 of the
register r flows into the Carry bit and the Carry bit flows into bit #7.

Register bit #6 flows into the IDC if WC=1.

IDC (NOT CHANGED)

WC=0
7 	6 	5 	4 	3 	2 	1 	0

WC=1

7 	6 	5 	4 	3 	2 	1 	0

Note: Whenever a rotate causes bit #7 of the specified register to change
polarity, the OVF bit is set in the PSL.
Processor Registers Affected 	 C, CC, IDC, OVF

Condition Code Setting
	

Register r

Positive

Zero

Negative

LOAD PROGRAM STATUS, UPPER

CC 1 CCO

0 1

0 0

1 0

Mnemonic 	 LPSU

Binary Code

;11111111
111010111010111 01

7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description

This one-byte instruction causes the current contents of the Upper
Program Status Byte to be replaced with the contents of register zero.

See Program Status Word description for bit assignments. Bits #4 and #3
of the PSU are unassigned and will always be regarded as containing zeroes.
Processor Registers Affected

	
F, II, SP

Condition Code Setting
	

N/A

66

LOAD PROGRAM STATUS, LOWER

Mnemonic
	

LPS L

Binary Code

1 	i 	i 	1
1 0 011 0

°IIIll
7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description

This one-byte instruction causes the current contents of the Lower
Program Status Byte to be replaced with the contents of register zero.

See Program Status Word description for bit assignments.

Processor Registers Affected 	 CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting

The CC will take on the value in bits #7 and #6 of register zero.

STORE PROGRAM STATUS, UPPER

Mnemonic
	

SPSU

Binary Code

0 0 0 1 0 0 1 0

7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the Upper Program Status
Byte to be transferred into register zero.

See Program Status Word description for bit assignments. Bits #4 and #3
which are unassigned will always be stored as zeroes.

Processor Registers Affected 	 CC

Condition Code Setting 	 Register Zero 	CC1 	CCO

Positive 	 0 	1

Zero 	 0 	0

Negative 	 1 	0

69

STORE PROGRAM STATUS, LOWER

Mnemonic
	

SPS L

Binary Code

0 010 1 0 0 1 1

7 6 5 4 3 2 1 0

Execution Time 	.2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the Lower Program
Status Byte to be transferred into register zero.

See Program Status Word description for bit assignments.
Processor Registers Affected 	 CC

Condition Code Setting Register Zero 	CC1 	CCO

Positive 	 0 	1

Zero 	 0 	0

Negative 	 1 	0

PRESET PROGRAM STATUS UPPER, SELECTIVE (Immediate Addressing)

Mnemonic
	

PPSU

Binary Code

0 1 1 1
	

1 1 0
1111111

V
ti

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Upper Program
Status Byte to be selectively set to binary one. When this instruction is
executed, each bit in the v field of the second byte of this instruction is
tested for the presence of a one and if a particular bit in the v field contains
a one, the corresponding bit in the status byte is set to binary one. Any bits
in the status byte which are not selected are not modified.

Processor Registers Affected
	

F, II,SP

Condition Code Setting
	

N/A

PRESET PROGRAM STATUS LOWER, SELECTIVE (Immediate Addressing)

Mnemonic
	

PPSL

Binary Code

0 1 1 1 0 1 1 1

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description
This two-byte instruction causes individual bits in the Lower Program

Status Byte to be selectively set to binary one. When this instruction is
executed, each bit in the v field of the second byte of this instruction is
tested for the presence of a one and if a particular bit in the v field contains
a one, the corresponding bit in the status byte is set to binary one. Any bits
in the status byte which are not selected are not modified.

Processor Registers Affected 	 CC, I DC, RS, WC, OVF, COM, C

Condition Code Setting
The CC bits may be set by the execution of this instruction.

CLEAR PROGRAM STATUS UPPER, SELECTIVE 	(Immediate Addressing)

Mnemonic
	

CPSU

Binary Code

0 1 1 1 0 1 0 0

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description
This two-byte instruction causes individual bits in the Upper Program

Status Byte to be selectively cleared. When this instruction is executed, each
bit in the v field of the second byte of this instruction is tested for the
presence of a one and if a particular bit in the v field contains a one, the
corresponding bit in the status byte is cleared to zero. Any bits in the status
byte which are not selected are not modified.

Processor Registers Affected
	

F, I I, 	SP

Condition Code Setting
	

N/A

71

CLEAR PROGRAM STATUS LOWER, SELECTIVE (Immediate Addressing)

Mnemonic
	

CPSL
	

V

Binary Code

0 1 1 1 0 1 0

I 	1

V

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description
This two-byte instruction causes individual bits in the Lower Program

Status Byte to be selectively cleared. When this instruction is executed, each
bit in the v field of the second byte of this instruction is tested for the
presence of a one and if a particular bit in the v field contains a one, the
corresponding bit in the status byte is cleared to zero. Any bits in the status
byte which are not selected are not modified.

Processor Registers Affected 	 CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting

The CC bits may be cleared by the execution of this instruction.

TEST PROGRAM STATUS UPPER, SELECTIVE 	(Immediate Addressing)

Mnemonic
	

TPSU
	

V

Binary Code

72

1 0 1 1 0 1 0 0
1 	1 	1 	1 	1 	1 	1

V

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description
This two-byte instruction tests individual bits in the Upper Program Status

Byte to determine if they are set to binary one. When this instruction is
executed, each bit in the v field of this instruction is tested for the presence
of a one, and if a particular bit in the v field contains a one, the corresponding
bit in the status byte is tested for a one or zero. The Condition Code is set
to reflect the result of this operation.

If a bit in the v field is zero, the corresponding bit in the status byte is
not tested.
Processor Registers Affected 	 CC

Condition Code Setting 	 CC 1 CCD

All of the selected bits in PSU are 1s 	0 	0

Not all of the selected bits in PSU are Is 	1 	0

TEST PROGRAM STATUS LOWER, SELECTIVE 	(Immediate Addressing)

Mnemonic
	

TPSL

Binary Code

1 0 1 1 0 1 0 1

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description
This two-byte instruction tests individual bits in the Lower Program

Status Byte to determine if they are set to binary one. When this instruction
is executed, each bit in the v field of this instruction is tested for a one, and
if a particular bit in the v field contains a one, the corresponding bit in the
status byte is tested for a one or zero. The Condition Code is set to reflect
the result of this operation.
Processor Registers Affected 	 CC

Condition Code Setting 	 CC 1 	CCO

All of the selected bits in PSL are 1s 	0 	0

Not all of the selected bits in PSL are 1s 	1 	0

ZERO BRANCH RELATIVE 	 (Relative Addressing)

Mnemonic 	ZBR R (*) a

Binary Code

I I
1 0 0 1 1 0 1 1

l
a

i

7 	6 5 4 3 2 	1 	0 7 6 5 4 3 2 	1 	0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte unconditional relative branch instruction directs the
processor to calculate the effective address differently than the usual
calculation for the Relative Addressing mode.

The specified value, a, is interpreted as a relative displacement from page
zero, byte zero. Therefore, displacement may be specified from - 64 to +63
bytes. The address calculation is modulo 819210 , so the negative dis-
placement actually will develop addresses at the end of page zero. For
example, ZBRR -8, will develop an effective address of 818410 , and a
ZBRR +52 will develop an effective address of 52io .

This instruction causes the processor to clear, address bits 13 and 14, the
page address bits; and to replace the contents of the Instruction Address
Register with the effective address of the instruction. This instruction may
be executed anywhere within addressable memory.

Indirect addressing may be specified.

Processor Registers Affected 	 None
Condition Code Setting 	 N/A

73

BRANCH ON CONDITION TRUE, RELATIVE 	 (Relative Addressing)

Mnemonic
	

BCTR,v
	

(*)a

Binary Code

0 0 0 1 1 0 V

111111

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte conditional branch instruction causes the processor to fetch
the next instruction to be executed from the memory location pointed to by
the effective address only if the two -bit v field matches the current
Condition Code field (CC) in the Program Status Word.

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction.

Indirect addressing may be specified.

If the v field is set to 316 , an unconditional branch is effected.

Processor Registers Affected 	 None

Condition Code Setting 	 N/A

BRANCH ON CONDITION TRUE, ABSOLUTE 	(Absolute Addressing)

Mnemonic
	

BCTA,v
	

(*)a

Binary Code

74

0 0 0 1 1 1
11111E

a high order
I 	I 	I 	I

	

111 	[III
a low order

I 	I 	I 	I 	I

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This three-byte conditional branch instruction causes the processor to
fetch the next instruction to be executed from the memory location pointed
to by the effective address only if the two-bit v field matches the two-bit
Condition Code field (CC) in the Program Status Word.

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction.

Indirect addressing may be specified.

If the v field is set to 316 , an unconditional branch is effected.
Processor Registers Affected 	 None

Condition Code Setting 	 N/A

BCFR,v (*)a

V
I 	I

a
III!

1 	0 	7 6 5 4 3 2 	1 	0

Mnemonic

Binary Code

11 0 1 01 11 1 0

7 6 5 4 3 2

BRANCH ON CONDITION FALSE, RELATIVE 	(Relative Addressing)

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the processor to fetch the next
instruction to be executed from the memory location pointed to by the
effective address only if the two-bit v field does not match the two-bit
Condition Code field (CC) in the Program Status Word. If there is no match,
the contents of the Instruction Address Register are replaced by the
effective address.

If the v field and CC field match, the next instruction is fetched from the
location following the second byte of this instruction.

Indirect addressing may be specified.

The v field may not be set to 316 as this bit combination is used for the
ZBRR operation code.

Processor Registers Affected 	 None

Condition Code Setting 	 N/A

BRANCH ON CONDITION FALSE, ABSOLUTE
	

(Absolute Addressing)

Mnemonic
	

BC FA,v
	

(*)a

Binary Code

75

1 0 0 1 1 1 V
1

a high order
111111

mil II
a low order

1111111

7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0

Execution Time
	

3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to fetch the next
instruction to be executed from the memory location pointed to by the
effective address only if the two-bit v field does not match the two-bit
Condition Code field (CC) in the Program Status Word. If there is no match,
the contents of the Instruction Address Register are replaced by the
effective address.

If the v field and CC field match, the next instruction is fetched from the
location following the second byte of this instruction.

Indirect addressing may be specified.

The v field may not be set to 316 as this bit combination is used for the
BXA operation code.

Processor Registers Affected 	 None

Condition Code Setting 	 N/A

BRANCH ON INCREMENTING REGISTER, RELATIVE (Relative Addressing)

Mnemonic
	

BIRR,r

Binary Code

1 1 0 1 110 r

111111

a
11[1

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the processor to increment the
contents of the specified register by one. If the new value in the register is
non-zero, the next instruction to be executed is taken from the memory
location pointed to by the effective address, i.e., the effective address
replaces the previous contents of the Instruction Address Register. If the
new value in register r is zero, the next instruction to be executed follows
the second byte of this instruction.

Indirect addressing may be specified.
Processor Registers Affected 	 None

Condition Code Setting 	 N/A

BRANCH ON INCREMENTING REGISTER,ABSOLUTE(Absolute Addressing)

Mnemonic BIRA,r (*)a

Binary Code

1 1 0 1 1 1 r a high order
1111111

a 	low 	order
111.111

7 6 5 4 3 2 1 	0 	7 	6 	5 4 3 2 	1 	0 7 	6 5 4 3 2 	1 	0

Execution Time 	3 cycles (9 clock periods)

Description
This three-byte branch instruction causes the processor to increment the

contents of the specified register by one. If the new value in the register is
non-zero, the next instruction to be executed is taken from the memory
location pointed to by the effective address, i.e., the effective address
replaces the previous contents of the Instruction Address Register. If the
new value of register r is zero, the next instruction to be executed follows
the second byte of this instruction.

Indirect addressing may be specified.
Processor Registers Affected 	 None

Condition Code Setting 	 N/A

76

BRANCH ON DECREMENTING REGISTER,RELATIVE (Relative Addressing)

Mnemonic
	

BDRR,r 	 (*)a

Binary Code

1 1 1
	

0

!a !!!

11111

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the processor to decrement the
contents of the specified register by one. If the new value in the register is
non-zero, the next instruction to be executed is taken from the memory
location pointed to by the effective address, i.e., the effective address
replaces the previous contents of the Instruction Address Register. If the
new value in register r is zero, the next instruction to be executed follows
the second byte of this instruction.

Indirect addressing may be specified.

Processor Registers Affected 	 None

Condition Code Setting 	 N/A

BRANCH ON DECREMENTING REGISTER,ABSOLUTE(Absolute Addressing)

Mnemonic
	

BDRA,r 	 (*)a

Binary Code

1 1 1 1 1 1 r

7 6 5 4 3 2 1 0

I 	III
a high order
111111

7 6 5 4 3 2 1 0

1111111

a low order
1111111

7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to decrement the contents
of the specified register by one. If the new value in the register is non-zero,
the next instruction to be executed is taken from the memory location
pointed to by the effective address, i.e., the effective address replaces the
previous contents of the Instruction Address Register. If the new address in
register r is zero, the next instruction to be executed follows the second byte
of this instruction.

Indirect addressing may be specified.

Processor Registers Affected 	 None

Condition Code Setting 	 N/A

77

BRANCH ON REGISTER NON-ZERO, RELATIVE 	(Relative Addressing)

Mnemonic
	

BR N R,r
	

(*)a

Binary Code

0 1 0 1 1 0 r

a

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two - byte branch instruction causes the contents of the specified
register r to be tested for a non-zero value. If the register contains a non-zero
value, the next instruction to be executed is taken from the location pointed
to by the effective address, i.e., the effective address replaces the current
contents of the Instruction Address Register.

If the specified register contains a zero value, the next instruction is
fetched from the location following the second byte of this instruction.

Indirect addressing may be specified.
Processor Registers Affected 	 None

Condition Code Setting 	 N/A

BRANCH ON REGISTER NON-ZERO, ABSOLUTE 	(Absolute Addressing)

Mnemonic
	

BRNA,r
	

(*)a

Binary Code

0 1 0 1 1 1
	

r
111111

a high order
I

a low order

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

The three- byte branch instruction causes the contents of the specified
register r to be tested for a non-zero value. If the register contains a non-zero
value, the next instruction to be executed is taken from the location pointed
to by the effective address, i.e., the effective address replaces the contents of
the Instruction Address Register.

If the specified register contains a zero value, the next instruction is
fetched from the location following the third byte of this instruction.

Indirect addressing may be specified.

Processor Registers Affected
	

None

Condition Code Setting
	

N/A

7R

BRANCH INDEXED, ABSOLUTE
	

(Absolute Addressing)

Mnemonic BXA (*)a,X

Binary Code

1 	0 0 1 1 1 1 1 a
1

high 	order
1 	1 	1 	1 	1

a low order

7 6 5 4 3 2 	1 	0 	7 6 5 4 	3 	2 	1 	0 7 6 5 4 3 2 	1 	0

Execution Time 	3 cycles (9 clock periods)

Description

This three - byte branch instruction causes the processor to perform an
unconditional branch. Indexing is required and register #3 must be specified
as the index register because the entire first byte of this instruction is
decoded by the processor. When executed, the content of the Instruction
Address Register (IAR) is replaced by the effective address.

If indirect addressing is specified, the value in the index register is added
to the indirect address to calculate the effective branch address.
Processor Registers Affected

	
None

Condition Code Setting
	

N/A

ZERO BRANCH TO SUBROUTINE, RELATIVE 	(Relative Addressing)

Mnemonic ZBSR (*) a

Binary Code

1
1 0 1 1 1 0 1 1 a

7 6 5 4 3 2 1 	0 7 6 5 4 3 2 	1 	0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte unconditional subroutine branch instruction directs the
processor to calculate the effective address differently than the usual
calculation for the Relative Addressing mode.

The specified value a is interpreted as a relative displacement from page
zero, byte zero. Therefore, displacement may be specified from - 64 to +63
bytes. The address calculation is modulo 819210 , so the negative displace-
ment will develop addresses at the end of page zero. For example, ZBSR
-10, will develop an effective address of 818210 , and ZBSR 31 will develop
an effective address of 3110 .

This instruction causes the processor to clear the page address bits, address
bits 14 and 13, and may be executed anywhere within addressable memory.

Indirect addressing may be specified.

When executed, this instruction causes the Stack Pointer to be incre-
mented by one, the address of the byte following this instruction is pushed
into the Return Address Stack (RAS), and control is transferred to the
effective address.
Processor Registers Affected

	
SP

Condition Code Setting
	

N/A

79

BRANCH TO SUBROUTINE ON CONDITION TRUE, RELATIVE (Relative
Addressing)

Mnemonic 	BST R,v (*)a

Binary Code

0 0 1 1 110
1 1 l

a
I

7 	6 	5 	4 3 	2 	1 	0 7 6 5 4 3 2 	1 	0

Execution Time 	3 cycles (9 clock periods)

Description

This two - byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field matches
the current Condition Code field (CC) in the Program Status Word. If the
fields match, the Stack Pointer is incremented by one and the current
contents of the Instruction Address Register, which points to the byte
following this instruction, is pushed into the Return Address Stack. The
effective address replaces the previous contents of the IAR.

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction and the SP is
unaffected.

Indirect addressing may be specified.

If v is set to 316 , the BSTR instruction branches unconditionally.

Processor Registers Affected
	

SP

Condition Code Setting
	

N/A

(Absolute
BRANCH TO SUBROUTINE ON CONDITION TRUE,ABSOLUTE Addressing)

Mnemonic
	

BSTAN
	

(*)a

Binary Code

0 0

1 1 1 1 V
1

1 	1 	1 	1 	1 	1
a high order

1 	1 	1 	1 	1 	1 	1
a low order
1111.111

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This three - byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field matches
the current Condition Code Field (CC) in the Program Status Word. If the
fields match, the Stack Pointer is incremented by one and the current
contents of the Instruction Address Register, which points to the byte
following this instruction is pushed into the Return Address Stack. The
effective address replaces the previous contents of the IAR.

If the v field and the CC field do not match, the next instruction is
fetched from the location following the third byte of this instruction and the
Stack Pointer is unaffected.

Indirect addressing may be specified.

If v is set to 316 , the BSTA instruction branches unconditionally.
Processor Registers Affected

	
SP

Condition Code Setting
	

N/A
Rn

BRANCH TO SUBROUTINE ON CONDITION FALSE, RELATIVE
Addressing)
(Relative

Mnemonic 	 BSFR,v (*)a

Binary Code

1 0 1 1 1 0
I
a

 ll

7 	6 5 4 3 2 	1 	0 7 6 5 4 3 2 	1 	0

Execution Time 	3 cycles (9 clock periods)

Description

This two - byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field does not
match the current Condition Code field (CC) in the Program Status Word. If
the fields do not match, the Stack Pointer is incremented by one and the
current content of the Instruction Address Register, which points to the
location following this instruction, is pushed into the Return Address Stack.
The effective address replaces the previous contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the
location following this instruction and the SP is unaffected.

Indirect addressing may be specified.

The v field may not be coded as 316 because this combination is used for
the ZBSR operation code.
Processor Registers Affected 	 SP

Condition Code Setting 	 N/A

BRANCH TO SUBROUTINE ON CONDITION FALSE, ABSOLUTE Addressing} ressing)

Mnemonic
	

BSFA,v
	

(*)a

Binary Code

81

1 0 1 1 1 1 V
I

a high order
1111

a low order
IIIIIII

7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This three - byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field does not
match the current Condition Code (CC) in the Program Status Word. If the
fields do not match, the Stack Pointer is incremented by one and the current
content of the Instruction Address Register, which points to the location
following this instruction, is pushed into the Return Address Stack. The
effective address replaces the previous contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the
location following this instruction and the SP is unaffected.

Indirect addressing may be specified.

The v field may not be coded as 316 as this combination is used for the
BSXA operation code.
Processor Registers Affected 	 SP

Condition Code Setting 	 N/A

0 1 1 1 1 0 r

BRANCH TO SUBROUTINE ON NON-ZERO REGISTER, RELATIVE

(Relative Addressing)

Mnemonic
	

BSNR,r
	

(*)a

Binary Code

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two- byte subroutine branch instruction causes the contents of the
specified register r to be tested for a non-zero value. If the register contains a
non-zero value, the next instruction to be executed is taken from the
location pointed to by the effective address. Before replacing the contents of
the Instruction Address Register with the effective address, the Stack Pointer
(SP) is incremented by one and the address of the byte following the
instruction is pushed into the Return Address Stack (RAS).

If the specified register contains a zero value, the next instruction is
fetched from the location following this instruction.

Indirect addressing may be specified.

Processor Registers Affected
	

SP

Condition Code Setting
	

N/A

BRANCH TO SUBROUTINE ON NON-ZERO REGISTER, ABSOLUTE

(Absolute Addressing)

Mnemonic
	

BSNA,r

Binary Code

0 1 1 1 1 1
	

r
(1

a high order a low order

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This three-byte subroutine branch instruction causes the contents of the
specified register r to be tested for a non-zero value. If the register contains a
non-zero value, the next instruction to be executed is taken from the
location pointed to by the effective address. Before replacing the current
contents of the Instruction Address Register (IAR) with the effective
address, the Stack Pointer (SP) is incremented by one and the address of the
byte following the instruction is pushed into the Return Address Stack (RAS).

If the specified register contains a zero value, the next instruction is
fetched from the location following this instruction.

Indirect addressing may be specified.
Processor Registers Affected

	
SP

Condition Code Setting
	

N/A

Q9

0
.1111

a high order
r

a 	orderl

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

BRANCH TO SUBROUTINE INDEXED, ABSOLUTE, UNCONDITIONAL

(Absolute Addressing)

Mnemonic
	

BSXA
	

(*)a,X

Binary Code

Execution Time 	3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to perform an uncondi-
tional subroutine branch. Indexing is required and register #3 must be
specified as the index register because the entire first byte of this instruction
is decoded by the processor.

Execution of this instruction causes the Stack Pointer (SP) to be
incremented by one, the address of the byte following this instruction is
pushed into the Return Address Stack (RAS), and the effective address
replaces the contents of the Instruction Address Register.

If indirect addressing is specified, the value in the index register is added
to the indirect address to calculate the effective address.

Processor Registers Affected
	

SP

Condition Code Setting
	 N/A

RETURN FROM SUBROUTINE, CONDITIONAL

Mnemonic
	

RETC,v

Binary Code

0 0 0
	

0

7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This one-byte instruction is used by a subroutine to conditionally effect a
return of control to the program which last issued a subroutine branch
instruction.

If the two-bit v field in the instruction matches the Condition Code field
(CC) in the Program Status Word, the following action is taken: The address
contained in the top of the Return Address Stack replaces the previous
contents of the Instruction Address Register (IAR), and the Stack Pointer is
decremented by one.

If the v field does not match CC, the return is not effected and the next
instruction to be executed is taken from the location following this
instruction.

If v is specified as 316 , the return is executed unconditionally.

Processor Registers Affected
	

SP

Condition Code Setting
	

N/A

83

RETURN FROM SUBROUTINE AND ENABLE INTERRUPT,CONDITIONAL

Mnemonic
	

RETE,v

Binary Code

0 pit 110 1 V

7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description
This one-byte instruction is used by a subroutine to conditionally effect a

return of control to the program which last issued a subroutine branch
instruction. Additionally, if the return is effected, the Interrupt Inhibit (II)
bit in the Program Status Word is cleared to zero, thus enabling interrupts.
This instruction is mainly intended to be used by an interrupt handling
routine because receipt of an interrupt causes a subroutine branch to be
effected and the Interrupt Inhibit bit to be set to 1. The interrupt handling
routine must be able to return and enable simultaneously so that the
interrupt routine cannot be interrupt unless that is specifically desired.

If the two-bit v field in the instruction matches the Condition Code field
(CC) in the Program Status Word, the following action is taken: The address
contained in the top of the Return Address Stack (RAS) replaces the
previous contents of the Instruction Address Register (IAR), the Stack
Pointer is decremented by one and the II bit is cleared to zero.

If the v field does not match CC, the return is not effected and the next
instruction to be executed is taken from the location following this instruction.

If v is specified as 316 , the return is executed unconditionally.

Processor Registers Affected 	 SP , II

Condition Code Setting 	 N/A

READ DATA
	

(Register Addressing)

Mnemonic
	

REDD,r
Binary Code

0 1 1 1 0 0
	

r

7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)
Description

This one-byte input instruction causes a byte of data to be transferred
from the data bus into register r. Signals on the data bus are considered to be
true signals, i.e., a high level will be set into the register as a one.

When executing this instruction, the processor raises the Operation
Request (OPREQ) line, simultaneously switching the M/I0 line to I0 and
the R/W to R (Read). Also, during the OPREQ signal, the D/C line switches
to D (Data) and the E/NE switches to NE (Non-extended).

See Input/Output section of this manual.
Processor Registers Affected

Condition Code Setting

CC

Register r 	CC1 	CCO

Positive 0 1
Zero 0 0
Negative 1 0

RA

READ CONTROL 	 (Register Addressing)

Mnemonic
	

RE DC,r

Binary Code

0 0 1 1 0 0
	

r

7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description
This one-byte input instruction causes a byte of data to be transferred

from the data bus into register r. Signals on the data bus are considered to be
true signals, i.e., a high level will be set into the register as a one.

When executing this instruction, the processor raises the Operation
Request (OPREQ) line, simultaneously switching the M/IO line to IO, the
rt/W line to R (Read), the D/C line to C (Control), and the E/NE line to NE
(Non-extended).

See Input/Output section of this manual.
Processor Registers Affected

Condition Code Setting

CC

Register r 	CC1 	CCO

Positive 	 0 	1

Zero 	 0 	0

Negative 	 1 	0

READ EXTENDED
	

(Immediate Addressing)

Mnemonic
	

REDE,r

Binary Code

0 1 0 1 0 1
	

r
I 	I 	1 	11 	1 	1 	1

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte input instruction causes a byte of data to be transferred
from the data bus into register r. During the execution of this instruction,
the content of the second byte of this instruction is made available on the
address bus. Signals on the data bus are true signals, i.e., a high level is
interpreted as a one.

During execution, the processor raises the Operation Request (OPREQ)
line, simultaneously placing the contents of the second byte of the
instruction on the address bus. During the OPREQ signal, the MO line is
switched to J,the IT./W line to R (Read), line and the E/NE line to E
(Extended).

See Input/Output section of this manual.
Processor Registers Affected

Condition Code Setting

CC

Register r 	CC1 	CCO

Positive 	 0 	1

Zero 	 0 	0
Negative 	1 	0

85

WRITE DATA
	

(Register Addressing)

Mnemonic
	

WRTD,r

Binary Code

1 1
	

I
	

0 0 	r

7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description

This one-byte output instruction causes a byte of data to be made
available to an external device. The byte to be output is taken from register r
and made available on the data bus. Signals on the data bus are true signals,
i.e., high levels are ones.

When executing this instruction, the processor raises the Operation Request
(OPREQ) line and simultaneously places the data on the Data Bus. Along
with the OPREQ, the M/IO line is switched to 10, the R/W signal is switched
to W (Write), and a Write Pulse (WRP) is generated. Also, during the valid
OPREQ signals, the D/C line is switched to D (Data) and the E/NE line is
switched to NE (Non-extended).

See Input/Output section of this manual.

Processor Registers Affected 	 None

Condition Code Setting 	 N/A

WRITE CONTROL 	 (Register Addressing)

Mnemonic WRTC,r

Binary Code

1 0 1 1 0 0 r

7 	6 5 4 3 2 	1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte output instruction causes a byte of data to be made
available to an external device.

The byte to be output is taken from register r and made available on the
data bus. Signals on the data bus are true signals, i.e., high levels are ones

When executing this instruction, the processor raises the Operation
Request (OPREQ) line and simultaneously places the data on the Data Bus.
Along with the OPREQ signal, the M/I0 line is switched to JO, the
signal is switched to W (Write), the DJC line is switched to C., (Control), the
E/NE is switched to NE (Non-extended), and a Write Pulse (WRP) is
generated.

See the Input/Output section of this manual.
Processor Registers Affected 	 None

Condition Code Setting 	 N/A

R6

WRITE EXTENDED
	

(immediate Addressing)

Mnemonic
	

WRTE,r

Binary Code

1 1 oil 0
I

1 I [

II 	I

V

7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte output instruction causes a byte of data to be made
available to an external device. The byte to be output is taken from register r
and is made available on the data bus. Simultaneously, the data in the second
byte of this instruction is made available on the address bus. The second
byte, v, may be interpreted as a device address.

Signals on the busses are true levels, i.e., high levels are ones.

When executing this instruction, the processor raises the Operation
Request (OPREQ) line and simultaneously places the data from register r on
the data bus and the data from the second byte of this instruction on the
address bus. Along with OPREQ, the M/I0 line is switched to TO, the R/W
line is switched to W (Write), the E/NE line is switched to E (Extended), and
a Write Pulse (WRP) is generated.

See the Input/Output section of this manual.

Processor Registers Affected 	 None

Condition Code Setting 	 N/A

NO OPERATION

Mnemonic
	

NOP

Binary Code

1 1 0 0 0 0 0 0

7 6 5 4 3 2 1 0

Execution Time 	2 cycles (6 clock periods)

Description

This one-byte instruction causes the processor to take no action upon
decoding it. No registers are changed, but fetching and executing a NOP
instruction requires two processor cycles.

Processor Registers Affected
	

None

Condition Code Setting
	

N/A

87

TEST UNDER MASK IMMEDIATE
	

(Immediate Addressing)

Mnemonic
	

TMI,r

Binary Code

1 1
	

1 0 1
I 	I

V
111;111

7 6 5 4 3 2 1 0
	

7 6 5 4 3 2 1 0

Execution Time 	3 cycles (9 clock periods)

Description

This two-byte instruction tests individual bits in the specified register r to
determine if they are set to binary one. During execution, each bit in the v
field of the instruction is tested for a one, and if a particular bit in the v field
contains a one, the corresponding bit in register r is tested for a one or zero.
The condition code is set to reflect the result of the operation.

If a bit in the v field is zero, the corresponding bit in register r is not tested.

Processor Registers Affected 	 CC

Condition Code Setting 	 CC 1 	CCO

All of the selected bits are 1s 	 0 	0

Not all of the selected bits are 1s 	 1 	0

DECIMAL ADJUST REGISTER
	

(Register Addressing)

Mnemonic 	DAR,r

Binary Code

1 0 0 	1 0 1

7 	6 5 4 3 2 	1 	0

Execution Time 	3 cycles (9 clock periods)

Description
This one-byte instruction conditionally adds a decimal ten (two's

complement negative six in a four-bit binary number system) to either the
high order 4 bits and/or the low order 4 bits of the specified register r.

The truth table below indicates the logical operation performed. The
operation proceeds based on the contents of the Carry (C) and Interdigit
Carry (IDC) bits in the Program Status Word. The C and IDC remain
unchanged by the execution of this instruction.

This instruction allows BCD sign magnitude arithmetic to be performed on
packed digits by the following procedure.

BCD Addition: 1. add 6616 to augend
2. perform addition of addend and augend
3. perform DAR instruction

BCD Subtraction: 	1. perform subtraction (2's complement of subtra-
hend is added to the minuend)

2. 	perform DAR instruction

Since this operation is on sign-magnitude numbers, it is necessary to establish
the sign of the result prior to executing in order to properly control the defi-
nition of the subtrahend and minuend.

Added to
Register r

Interdigit
Carry
	

Carry

AA16
AO 16
00 16
OA 16

Processor Registers Affected 	 CC

Condition Code Setting

The Condition Code is set to a meaningless value.

89

HALT, ENTER WAIT STATE

Mnemonic
	

HALT

Binary Code

0 1 0 0 0 0 0 0
7 6 5 4 3 2 1 	0

Execution Time 	2 cycles (6 clock periods)

Description
This one-byte instruction causes the processor to stop executing instruc-

tions and enter the WAIT state. The RUN/WAIT line is set to the WAIT state.

The only way to enter the RUN state after a HALT has been executed, is
to reset the 2650 or to interrupt the processor.

Processor Registers Affected 	 None

Condition Code Setting 	 N/A

90

CHAPTER III

2650 ASSEMBLER LANGUAGE

c17

INTRODUCTION

The assembly language described in this document is a symbolic language
designed specifically to facilitate the writing of programs for the Signetics
2650 processor. The 2650 Assembler is a program which accepts symbolic
source code as input and produces a listing and/or an object module as output.

The assembler is written in standard FORTRAN IV and is available either
through a timesharing service or in batch form directly from Signetics. This
is done to assure compatibility and ease of installation on a user's own
computer equipment. It is modular and may be executed in an overlay
mode should memory restrictions make that necessary. The program is approx-
imately 1,250 FORTRAN card images in length.

An attempt was made in the design of the language to make it similar to
other contemporary assembler languages because it was felt that such
similarity would reduce the learning time necessary to become proficient in
this language. The 2650 assembler features forward references, self-defining
constants, free format source code, symbolic addressing, syntax error
checking, load module generation, and source statement listing.

In order to understand the 2650 instruction set, architecture, timing, inter-
face requirements and electrical characteristics, the reader is referred to the
Signetics 2650 Hardware Specification section.

The assembler is a two pass program that builds a symbol table, issues
helpful error messages, produces an easily readable program listing and
outputs a computer readable object (load) module.

The assembler features symbolic and relative addressing, forward refer-
ences, complex expression evaluations and a versatile set of Pseudo-
Operations. These features aid the programmer/engineer in producing well-
documented, working programs in a minimum of time. Additionally, the
assembler is capable of generating data in several number based systems as
well as both ASCII and EBCDIC character codes.

ASSEMBLER LANGUAGE

The assembler language provides a means to create a computer program.
The features of the Assembler are designed to meet the following goals:

• Programs should be easy to create
• Programs should be easy to modify
• Programs should be easy to read and understand
• A machine readable, machine language module to be output

This assembler language has been developed with the following features:

• Symbolic machine operation codes (op-codes, mnemonics)
• Symbolic address assignment and references
• Relative addressing
• Data creation statements
• Storage reservation statements
• Assembly listing control statements
• Addresses can be generated as constants
• Character codes may be specified as ASCII or EBCDIC
• Comments and remarks may be encoded for documentation

As Assembly language program is a program written in symbolic machine
language. It is comprised of statements. A statement is either a symbolic
machine instruction, a pseudo-operation statement, or a comment.

93

The symbolic machine instruction is a written specification for a particu-
lar machine operation expressed by symbolic operation codes and some-
times symbolic addresses or operands. For example:

LOC2 	STRR, RO 	SAV

Where:

LOC2 	is a symbol which will represent the memory address of the
instruction.

STRR 	is a symbolic op-code which represents the bit pattern of the
"store relative" instruction.

RO 	is a symbol which has been defined as register 0 by the
"EQU pseudo-op".

SAV 	is a symbol which represents the memory location into
which the contents of register 0 are to be stored.

A pseudo-operation statement is a statement which is not translated into
a machine instruction, but rather is interpreted as a directive to the
assembler program. Example:

SCHD 	ACON 	REDY

Where:

ACON 	is a pseudo-op which directs the assembler program to
allocate two bytes of memory.

REDY
	

is a symbol, representing an address. The assembler is directed
to place the equivalent memory address into the byte
allocated space.

SCHD 	is a symbol. The assembler is to assign the memory address
of the first byte of the two allocated to this symbol.

STATEMENTS

Statements are always written in a particular format. The format is
depicted below:

LABEL FIELD OPERATION FIELD OPERAND FIELD COMMENT FIELD

The statement is always assumed to be written on an 80 column data
processing card or an 80 column card image.

The Label Field is provided to assign symbolic names to bytes of memory.
If present, the Label Field must begin in logical column one.

The Operation Field is provided to specify a symbolic operation code or
a pseudo-operation code. If present, the Operation Field must either begin
past column one or be separated from logical column one by one or more
blanks.

QA

The Operand Field is provided to specify arguments for the operation in
the Operation Field. The Operand Field, if present, is separated from the
Operation Field by one or more blanks.

The Comment Field is provided to enable the assembly language program-
mer to optionally place an English message stating the purpose or intent
of a statement or a group of statements. The Comment Field must be
separated from the preceding field by one or more blanks.

COMMENT STATEMENT

A Comment Statement is a statement that is not processed by the
assembler program. It is merely reproduced on the assembly listing. A
Comment Statement is indicated by encoding an asterisk in logic column
one. Example:

*THIS IS A COMMENT STATEMENT

Logical columns 72-80 are never processed by the assembler, they are
always reproduced on the assembly listing without processing. This field
is a good place for sequence numbers, if desired.

SYMBOLIC ADDRESSING

When writing statements in symbolic machine language, i.e., assembler
language, the machine operation code is usually expressed symbolically.
For example, the machine instruction that stores data from register 0 into a
memory location named SAV, may be expressed as:

STRA, RO SAV

The assembler, when translating this symbolic operation code and its
arguments into machine language for the 2650, defines three bytes contain-
ing H'CC0020', where '0020' is the value of SAV.

The address of the translated bytes is known because the Assembly
Program Counter is always set to the address of the next byte to be assembled.

The user can attach a label to an instruction:

SAVR STRR,R0 SAV

The assembler, upon seeing a valid symbol in the label field, assigns the
equivalent address to the label. In the given example, if the STRR instruction
is to be stored in the address H'0127', then the symbol SAVR would be made
equivalent to the value H'0127' for the duration of the assembly.

The symbol could then be used anywhere in the source program to refer
to the address value or, more typically, it could be used to refer to the
instruction location. The important concept is that the address of the instruc-
tion need not be known; only the symbol need to be used to refer to the
instruction location. Thus, when branching to the STRR instruction, one
could write:

BCTA,3 	SAVR

When the three byte branch instruction is translated by the assembler,

95

the address of the STRR instruction is placed in the address field of the
branch instruction.

It is also possible to use symbolic addresses which are near other locations
to refer to those locations without defining new labels. For example:

BCTR,3 	BEG
BCTR,O 	BE G+4
ANDZ 	3
BSTR,3 	S+48

BEG
	

LODA,2 	PAL
HALT
SUBI,2 	3

In the above example, the instruction "BCTR,3 	BEG" refers to the
LODA,2 	PAL instruction. The instruction "BCTR,O 	BEG+4" refers
to the SUBI,2 	3 instruction.

BEG+4 means the address BEG plus four bytes. This type of expression is
called relative symbolic addressing and given a symbolic address; it can be
used as a landmark to express several bytes before or after the symbolic
address. Examples:

BCTR,3 	PAL+23
BSTA,O 	STT-18

The arguments are evaluated like any other expression and cannot exceed
in value the maximum number that can be contained in a FORTRAN
integer constant.

PROGRAM COUNTER

During the assembly process the assembler maintains a FORTRAN Integer
cell that always contains the address of the next memory location to be
assembled. This cell is called the Program Counter. It is used by the assembler
to assign addresses to assembled bytes, but it is also available to the
programmer.

The character "$" is the only valid symbol containing a special character
that the assembler recognizes without error. "$" is the symbolic name of the
Program Counter. It may be used like any other symbol, but it may not
appear in the label field.

When using the "$", the programmer may think of it as expressing the idea
"8" = "address of myself". For example,

10816 	BCTR,3

This branch instruction is in location 10816 . The instruction directs the
microprocessor to "branch to myself". The Program Counter in this
example contains the value 10816 .

96

LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters combined to
form assembly language elements. These language elements include symbols,
instruction mnemonics, constants and expressions which make up the
individual program statements that comprise a source program.

CHARACTERS

Alphabetic: 	 A through Z
Numeric: 	 0 through 9
Special characters: 	 blank

(left parenthesis
) right parenthesis
+ add or positive value

subtract or negative value
* asterisk

single quote
, comma
/ slash
$ dollar sign
< less than sign
> greater than sign

SYMBOLS

Symbols are formed from combination of characters. Symbols provide a
convenient means of identifying program elements so they can be referenced
by other elements.

1. Symbols may consist of 1 to 4 alphanumeric characters: A through Z,
0 through 9.

2. Symbols must begin with an alphabetic character.
3. The character $ is a special symbol which may be used in the argument

field of a statement to represent the current value of the Location
Counter.

4. The character * is a special symbol which is used as an indirect address
indicator.

5. The characters + and - are also used as auto-increment/auto-decrement
indicators.

The following are examples of valid symbols:

DOP1 	RAV3
AA 	TEMZ

The following are examples of invalid symbols:

1LAR
	

begins with numeric
PA N
	

imbedded blank

CONSTANTS

A constant is a self-defining language element. Unlike a symbol, the value
of a constant is its own "face" value and is invariant. Internal numbers are
represented in 2's complement notation. There are two forms in which
constants may be written: the Self-Defining Constant and the General
Constant.

97

SELF-DEFINING CONSTANT

The self-defining constant is a form of constant which is written directly
in an instruction and defines a decimal value. For example:

	

LODA,R3 	BUFF+65

In this example, 65 is a self-defining constant. The maximum value of the
integer constant expressed by a self-defining constant is that which, when
expressed in binary, will fit within the basic arithmetic unit of the host
computer (typically 1 word).

GENERAL CONSTANT

The general constant is also written directly in an instruction, but the
interpretation of its value is dictated by a code character and delimited by
quotation marks.

LODA,R3 BUFF+H`3E1

In this example, the code letter H specifies that 3E is a hexadecimal con-
stant equivalent to decimal value 62.

The maximum size of a number generated by a general constant form
(B, 0, D, H) may be no larger than the size of the FORTRAN integer cell of the
host computer. However, the most important concept to understand when
using constant forms is that the final value of a resolved expression must fit
the constraints of the actual field destined to contain the value. For example:

	

LODA,R2 	PAL+1-1'3EE2'- H'3EE0'

In this case, the argument, when resolved, must fit into the 13 bits in the
actual machine instruction. Even though each of the two hexadecimal
constants are larger than can fit into 13 bits, the final value of the expression
is containable in 13 bits and therefore the constants are permitted. Similarly,
the statement DATA H'3FE' is not allowed, as the DATA statement defines
one byte quantities and H'3FE' specifies more than 8 bits. Summarily, the
size of the evaluated expressions must be less than or equal to their corre-
sponding data fields. There are 6 types of General Constants:

	

Code 	 Type
B Binary Constant
O Octal Constant
D Decimal Constant
H Hexadecimal Constant
E EBCDIC Character Constant
A 	ASCII Character Constant

B: BINARY CONSTANT

A binary constant consists of an optionally signed binary number of up to
8 bits enclosed in single quotes and preceded by the letter B, e.g., B'1011011'.
Binary information is stored right justified.

0: OCTAL CONSTANT

An octal constant consists of an optionally signed octal number enclosed

no

by single quotation marks and preceded by the letter 0, e.g., O'352'. The
value will be right justified.

D: DECIMAL CONSTANT

A decimal constant consists of an optionally signed decimal number
enclosed by single quotation marks and preceded by the letter D, e.g.,
D'249'. The value will be right justified.

H: HEXADECIMAL CONSTANT

A hexadecimal constant consists of an optionally signed hexadecimal
number enclosed in single quotation marks and preceded by the letter H,
e.g., H'3F'. The value will be right justified.

E: EBCDIC CHARACTER CONSTANT

An EBCDIC character consists of a string of EBCDIC characters enclosed
by single quotation marks and preceded by the letter E, e.g., E'ARE YOU
THERE?'. Each character will be encoded in 8-bit EBCDIC and stored in
successive bytes. The maximum number of characters which may be
specified in one character string constant is 16.

A: ASCII CHARACTER CONSTANT

An ASCII character constant consists of a string of ASCII characters
enclosed by quotation marks and preceded by the letter A. For example:
A'HELLO THERE'. Each character will be encoded in 7-bit ASCII and
stored in successive bytes. The high order bit is always set to zero in each
allocated byte. Up to 16 characters may be specified in one statement.

Note: See Appendix C for permissible characters and their equivalent ASCII and
EBCDIC codes. To specify a single quotation mark as a character constant
it must appear twice in the character string, e.g., A'TYPE' 'HELP' 'NOW'
will appear in storage as TYPE'HELP'NOW.

MULTIPLE CONSTANT SPECIFICATIONS

General constant forms, except A and E, allow multiple specifications
within the constant expression. For example: D'52, 21, 208, 27'. A comma
separates each byte specification and successive specifications determine
successive bytes of storage. Only 16 bytes of information may be specified
in any one general constant form and each byte may be optionally signed.
For example:

H'03,- F2,+11,- 8,33,0'
0'271,133'.

EXPRESSIONS

An expression is an assembly language element that represents a value.
It consists of a single term or a combination of terms separated by arithmetic
operators. A term may be a valid symbolic reference, a self-defining constant
or a general constant.

It is important to understand that although individual terms in a expression
may exceed the number size restriction of the 2650 (one or two bytes), they
may not cause the number size of the host computer's integer FORTRAN
constant to be exceeded.

99

Examples of valid expressions:

LOOP 	PAL- $
LOOP+5 	$- PAL+3
SAM+3- LOOP BIT- 3+1-11 3F1'

Note: The special symbol '$' represents the current value of the location
counter.

SPECIAL OPERATORS

There are two special operators that are recognized by the assembler.
They are:

< less than sign
> greater than sign

The assembler interprets these operators in a special way:

< perform a modulo 256 divide (use high order byte)
> perform a divide by 256 (use low order byte)

These operators, when used, must appear as the first character in the
argument field. If they are imbedded in an expression, the results are
unpredictable.

These special operators are intended to be used to access a two byte
address in one byte parts using a minimum of storage. For example, if it is
desired to get the high order bits of an address (ADDB) into register 2 and the
low order bits into register 1 it could be done as follows:

LODR,R2 APAL
LODR,R1 APAL+1
• • •
• • •
• • •

APAL 	ACON 	ADDB

or, by utilizing the special operators, it could be done as follows:

LODI,R2 <ADDB
LODI,R1 >ADDB

The first method uses 6 bytes to accomplish what the second method can do
in 4 bytes.

The special operators care most often used to facilitate the passing of an
address in registers.

nn
I1611,4

SYNTAX

Assembly language elements may be combined to symbolically express
both 2650 instructions and assembler directives. There are specific rules for
writing these instructions. This set of rules is known as the Syntax of the
symbolic assembler language. The following description assumes a logical
input of an 80-column data processing card, but since the host assembler is
written in Fortran, the input media may be magnetic tape, magnetic disk,
paper tape, etc. Only the format statement for input need be changed to
accommodate the various input media.

FIELDS

A statement prepared for processing by the assembler is logically divided
into four fields: the Name Field, the Operation Field, the Argument Field
and the Comment Field. Each field is separated by at least one blank
character. No continuation cards are allowed, and only logical columns
1 through 72 are scanned by the assembler. Logical columns 73 through
80 inclusive may be used for any desired purpose.

NAME FIELD

The name (or label) field optionally contains a symbolic name which the
assembler assigns to the instruction specified in the remaining part of the
line. If a name is specified, it must begin in logical column 1. The assembler
assumes that there is no name if logical column 1 is blank. The name field,
if present, must contain only a valid symbol.

OPERATION FIELD

The operation field contains a mnemonic code which represents a 2650
processor operation or an assembly directive. The operation field must be
present in every non-comment line. See Appendix A for a list of the valid
mnemonic codes. Additionally, depending on the instruction type, the
operation field may also specify a general purpose register or a condition
code.

ARGUEMENT FIELD

The argument field contains one or more symbols, constants or expres-
sions separated by commas. The argument field specifies storage locations,
constants, register specifications and any other information necessary to
completely specify a machine operation or an assembler directive. Embedded
blanks are not permitted as they are considered field terminators.

COMMENT FIELD

The comment field contains any valid characters in any combination.
The comment field is not processed by the assembler, but is merely repro-
duced on the listing next to the accompanying instruction. It is usually
used to explain the purpose or intention of a particular instruction or
group of instructions.

COMMENT CARD

An entire 72 column line may be utilized to print comments by coding
an asterisk (*) in column 1. This entire card is merely reproduced on the
assembly listing without processing by the assembler.

101

SYMBOLS

Symbols are used in the name field of a symbolic machine instruction
to identify that particular instruction and to represent its address. Symbols
may be used for other purposes, such as the symbolic representation of
some memory address, the symbolic representation of a constant, the
symbolic representation of a register, etc.

No matter how the symbol is used, it must be defined. A symbol is defined
when the assembler knows what value the symbol represents. There is only
one way to define a symbol. The symbol must at some time appear either
in the name field of an instruction or of an assembler directive. The symbol
will be assigned the current value of the Location Counter when it appears
in the name field of a machine instruction, or it may be assigned some other
value through use of the EQU assembler directive. A symbol may not appear
in the name field more than once in a program, because this would cause the
assembler to try to redefine an already defined label. The assembler will
not do this and will flag the second appearance of a particular label as an
error.

SYMBOLIC REFERENCES

Symbols may be used to refer to storage designations, register assignments,
constants, etc. For example:

Address 	 Name 	Operation 	 Argument
101 	 MAZE 	 DATA 	 H'F5'
102 	 LODA,3 	 MAZE

The symbolic label "MAZE" represents the address 101. It is used in the
machine instruction at address 102 to tell the assembler to build an instruc-
tion LODA,3 	101. The symbolic label, in this case, is a way for the
programmer to specify an address without knowing exactly what the address
should be when he writes the program. In this example, assume there was a
need to modify this sequence of code: a data statement was inserted between
the original two statements.

Address 	 Name 	Operation 	 Argument
99 	 MAZE 	 DATA 	 111 F5H
9A,9B 	 DATA 	 H'FE,3A'
9C 	 LODA,3 	 MAZE

Even though there was a program change which caused the data at MAZE
to be located at address 99, the load instruction referencing the data didn't
have to be rewritten because the assembler could provide the proper physical
address for the symbolic address MAZE. The instruction at address 9C will
be assembled as LODA,3 	99.

SYMBOLIC ADDRESSING

When writing instructions in the symbolic assembler language for the
2650, the addresses may be expressed through symbolic equivalents. The
assembler will translate the symbolic address to its numeric equivalent
during the assembly process.

1n9

It is good programming practice to make all address references symbolic,
as this greatly eases the programmer's job in producing a working program.
To make the register specification symbolic, one could equate a symbol to
the register number:

RG3
	

EQU 	3
• • .

• • •

. . .

• • •

LODA,RG3 MAZE

FORWARD REFERENCES

A previously defined symbol is one which has appeared in the name field
before it is referenced (as above). In contrast, a forward reference is a
symbolic reference to a line of code when the symbol has not yet appeared
in the name field. For example:

ADDA,2 	COEF
• • .
• • •
• • •

COEF 	DATA 	D'123'

Forward references may be used anywhere in a program with the following
exceptions:

1. The register/condition field.
2. The symbolic argument fields of EQU, RES, ORG and DATA statements.

RELATIVE ADDRESSING

The programmer may reference a memory cell either directly or via
relative addressing. To refer directly to a memory cell of symbolic address
MAIN, one has merely to use the name MAIN in the argument field of the
referencing instruction. For example:

BIRA,R2 MAIN

It is also possible to express the address of a memory cell symbolically
if some nearby cell is symbolically assigned. For example, to load the
memory cell which is 5 cells higher in memory than the cell named MAIN,
one need only to refer to it as MAIN+5:

LODA,2 	MAIN+5

This later method is called relative addressing, and the relative count may be
given as + or - the maximum value which can be held in one integer variable
of the host computer's FORTRAN compiler.

THE LOCATION COUNTER AND SYMBOL "$"

There is one symbolic name, "$", which is automatically defined by the
assembler. This single character name is always symbolically equated to the
assembler's Location Counter. Since the Location Counter is used by the
assembler during the assembly process and is usually equated to the address

103

of the next byte to be assembled, it represents the address of the instruction
or data currently being specified. For example: BCTR,3 	$+5. The branch
address will be interpreted by the assembler to be the address of the first
byte of the branch instruction plus 5 bytes.

HARDWARE RELATIVE ADDRESSING

When using instructions which use "hardware relative addressing" (as
distinguished from relative addressing discussed earlier in this section), it is
important to realize the assembler will not only evaluate the expression
which is given as an operand address, but will convert it to a hardware
relative address (see the Hardware Specifications manual for a description of
the addressing modes). For example:

Address 	 Name 	Operation 	 Argument
100 	 SAM 	 LODA,R2 	 PAL
103 	 SUBI,R2 	 -3
105 	 BIRR,R3 	 SAM
107 	 next instruction

In this code, the BIRR instruction specifies hardware relative addressing.
Even though the equivalent value of the symbolic address SAM is 100, the
relative addressing instruction requires a displacement relative to the address
of the next sequential instruction. Therefore, the operand SAM will be
evaluated as = - (current location counter+length of BIRR instruction- SAM)
= - (105+2-100) = - (+7) = -7. Remember, where the hardware instruction
calls for "hardware relative addressing", the expression in the operand field
will be evaluated as the displacement from the address of the next sequential
instruction. The value of this displacement may range from -64 to +63.

INDIRECT ADDRESSING

The symbol "*" is used to specify indirect addressing. For example:

BCTA,3 	*SAM
• • •
• • •
• • •

SAM 	ACON 	SUBR

In this code, the BCTA instruction specifies indirect addressing. The
assembler will set the indirect bit (byte #1, bit 47) for this instruction.

AUTO-INCREMENT AND AUTO-DECREMENT

The symbol "+" and "-" are used to specify auto-increment and auto-
decrement, respectively. For example:

LODA,R0 BUF,R3,+

In this code, which specifies auto-increment, the assembler sets bits
#6 and #5 of byte #1 to "01" for this instruction. This option is specified
in the instruction set tables as (,X).

1 04

PROCESSOR INSTRUCTIONS
2650 machine instructions may be written in symbolic code. All features

provided by the assembler such as symbolic addressing and constant genera-
tion may be used. The fields described below are free form and are separated
by at least one blank character. The name, however, if present, must begin
in logical column 1.

LABEL 	OPERATION 	OPERAND 	COMMENTS

name 	 opcode 	 operand(s)

Where:

LABEL FIELD 	contains an optional label which the assembler will
assign as the symbolic address of the first byte of the
instruction.

OPERATION 	contains any of the 2650 processor mnemonic operation
FIELD 	 codes as detailed in Appendix A, or any Assembler

Directive. This field may include an expression which
specifies a register or value as required by the instruction.
All symbols used in this field must have been previously
defined, i.e., no symbolic forward references are allowed.

OPERAND 	contains one or more operand elements such as indirect
FIELD 	 address indicator, operand expression, index register

specification, auto-increment/auto-decrement indicator,
constant specification, etc., depending on the require-
ments of the particular instruction.

COMMENTS 	any characters following the argument field will be
FIELD 	 reproduced in the assembly listing without processing.

The Comments Field must be separated from the argu-
ment field by at least one blank.

Note: Refer to Appendix E for a summary of the mnemonic op-codes and see 2650
Hardware Specifications.

105

DIRECTIVES TO THE 2650 ASSEMBLER
There are eleven directives which the assembler will recognize. These

assembler directives, although written much like processor instructions, are
simply commands to the assembler instead of to the processor. They direct
the assembler to perform specific tasks during the assembly process, but
have no meaning to the 2650 processor. These assembler directives are:

ORG
EQU
ACON
DATA
RES
END
EJE
PRT
SPC
TITL
PCH

ORG SET LOCATION COUNTER

The ORG directive sets the assembly Location Counter to the location
specified. The assembler assumes an ORG 0 at the beginning of the program
if no ORG statement is given.

LABEL OPERATION OPERAND

{ name } ORG expression

Where:

name

expression

Examples:

optionally provides a symbol whose value will be
equated to the specified location.

when evaluated, results in a positive integer value. This
value will replace the contents of the location counter,
and bytes, subsequently assembled will be assigned
sequential memory addresses beginning with this value.
Any symbols which appear in the argument must have
been previously defined.

LARR 	ORG 	YORD
STAR 	ORG 	H'1001

107

EQU SPECIFY A SYMBOL EQUIVALENCE

The EQU directive tells the assembler to equate the symbol in the name
field with the evaluatable expression in the argument field.

LABEL OPERATION OPERAND

name EQU expression

Where:

name

expression

Examples:

is the symbol which is to be assigned some value by the
execution of this directive.

may be resolved to zero or some integer value which is
containable in the host computer's FORTRAN integer cell.
If a symbol is used in the argument, it must have been
previously defined.

PAL 	EQU 	H`10F'
LOP2 	EQU 	PAL
RAMP 	EQU 	SLOP- 3+PAL
REG1 	EQU 	1

108

ACON DEFINE ADDRESS CONSTANT

The ACON directive tells the assembler to allocate two successive bytes of
storage. The evaluated argument will be stored in the two bytes, the low order
8 bits in the second byte and the high order bits in the first byte. This
directive is mainly intended to provide a double byte containing an address
for use as the indirect address for any instruction executing in the indirect
addressing mode.

LABEL OPERATION OPERAND

{ name } ACON expression

Where:

name

expression

Example:

is an optional label. If specified, the name becomes the
symbolic address of the first byte allocated.

is some expression which must resolve to a positive
value or zero. If positive, the value should be no larger
than that which can be contained in two bytes.

ASUB 	ACON 	SUBR

109

DATA DEFINES MEMORY DATA

The DATA directive tells the assembler to allocate the exact number
of bytes required to hold the data specified in the argument field of this
directive. Up to 16 bytes can be specified with one DATA directive, but
the argument field may not extend past logical column 72.

LABEL OPERATION OPERAND

{ name } DATA expression

Where:

name

expression

Examples:

is an optional label. If used, the name becomes the
symbolic address of the first byte allocated by the
directive.

is a general constant, a self-defining constant or a
symbolic address. If a symbol is specified, it must have
been previously defined. A multiple constant specifica-
tion in the argument field will cause a corresponding
number of bytes to be allocated. Any other expression
that can be resolved to a single value will result in one
byte being allocated.

PAL
	

DATA 	LOOP
DATA 	H'03,22,FC,A1'
DATA 	+127
DATA 	D'28'

Note: If the expression evaluates to a value between 0 and 255 the result is an
eight bit absolute binary number. DATA 	+127 results in H'7F'. Also,
if the expression evaluates to a value which is less than 0 the result
is a 2's complement, binary number. DATA 	1-1'- 5' results in I-VFW.

110

RES RESERVE MEMORY STORAGE

The RES directive tells the assembler to reserve contiguous bytes of
storage. The number of bytes so reserved is determined by the argument.
The reserved bytes are not set to a known value, but rather the effect of this
directive is to increment the location counter.

LABEL OPERATION OPERAND

{name} RES expression

Where:

name

expression

Example:

is an optional label. If used, the name becomes the
symbolic address of the first byte allocated.

is some evaluatable expression which must resolve to
some positive integer or zero. The value of this expres-
sion may not exceed the maximum positive value
containable in a FORTRAN cell of the host computer. If a
symbol is specified, it must have been previously defined.

LOR 	RES 	23
MASK 	RES 	LOR+5

RES 	I-1'1A'

END END OF ASSEMBLY

The END directive informs the assembler that the last statement to be
assembled has been input and the assembler may proceed with the assembly.
The END directive causes the assembler to communicate the program start
address to the object module.

LABEL
	

OPERATION
	

OPERAND

END
	

expression

Where:

expression may be resolved to the starting address of the program.
If this parameter is not specified, the start address is set
to zero.

111

EJE EJECT THE LISTING PAGE

The EJE directive tells the assembler to advance the listing to the top of
the next page regardless of the line position on the current listing page.

The directive is used primarily to organize listing for documentation
purposes and does not appear in the listing.

LABEL
	

OPERATION
	

OPERAND

EJE

PRT PRINTER CONTROL

The PRT directive tells the assembler to resume or discontinue printing
of the assembled program.

This directive is used primarily to shorten assembly time by listing only that
portion of the program which the user needs to see. Only the PRT OFF will
appear in the listing.

LABEL OPERATION OPERAND

PRT ton
f

Note: PRT is set ON at the beginning of an assembly of the assembler.

112

SPC SPACE CONTROL

The SPC directive tells the assembler to skip or space a number of lines.

This directive is used primarily to organize listings for documentation
purposes and does not appear in the listing.

LABEL
	

OPERATION
	

OPERAND

SPC
	

expression

Where:

expression

Example:

SPC 5

is some evaluatable expression which must resolve to
some positive integer. If the value of this expression is
equal to, or greater than, the number of lines remaining
on the page, the effect is the same as the EJE directive.

TITL TITLE

The TITL directive tells the assembler to skip to the top of the next page
and insert a given title into the main header.

This directive is used primarily for documentation purposes and does not
appear in the listing.

LABEL
	

OPERATION
	

OPERAND

TITL
	

expression

Where:

expression
	

is the title information not to exceed forty character
positions.

Example:

TITL 	MAIN PROGRAM SUBROUTINE

113

PCH PUNCH CONTROL

The PCH directive tells the assembler to selectively resume or discontinue
the output of the load module.

This directive is used primarily to shorten assembly time when a load
module is not desired or when only a portion of the load module is desired.

LABEL OPERATION OPERAND

PCH
{offon

Note: PCH is set ON at the beginning of an assembly by the assembler.
When PCH OFF is specified, any prior load module data is output.

114

THE ASSEMBLY PROCESS
The 2650 assembler translates symbolic source code into machine language

instructions. The assembler examines every source statement for syntactic
validity and produces the equivalent machine code for the 2650 processor.

This is a two pass assembler, which means, the entire source code is
scanned twice by the assembler. On the first pass, all defined labels and their
equivalent values are stored in a symbol table, the first byte of every instruc-
tion is fully determined, and some errors may be detected. During pass 2,
symbolic address references are replaced by their values, errors may be
detected, and a listing and load/object module is generated.

SYMBOL TABLE

The assembler builds and maintains a symbol table during the assembly
process. The symbol table contains an entry for each symbol in the assembled
program. The entry consists of the symbol itself and its value. Up to 400
symbols may be used in each program assembled. If a symbol, which
appears in the argument field of an instruction has never been defined
(never appeared in the NAME field), the assembler will generate an error
code on the listing because it is unable to resolve an undefined symbol and
will place zero as the unresolved value in the object module.

LOCATION COUNTER

The assembler maintains a memory cell which it uses as a Location
Counter. This Location Counter keeps track of the address of the next
byte of storage to be allocated by the assembler. During coding, the
programmer may think of the Location Counter as containing the address
of the first byte of the instruction being written. In this assembler, the
Location Counter is also used to provide load information. This means
that the addresses displayed on an assembly listing are the actual addresses
which are to contain the corresponding information upon loading of the
object program.

ERROR DETECTION

During an assembly, the source program is checked for syntax errors.
If errors are found, appropriate notification is given and the assembly
proceeds. Although an assembled program containing errors generally will
not run properly, it is considered good practice to complete the assembly
to locate all errors at one time, rather than terminate it when an error
is encountered.

ERROR CODES

As shown in the listing illustration, there are three columns on the
listing in which an error indication may appear. An error displayed, in the
first column usually indicates that the error was in the Name Field, the
second column corresponds to the Operation Field, and the third corresponds
to the Argument Field. Sometimes because an error causes the assembler
to view the next field incorrectly, a valid field may be flagged as an error.
This is a consequence of the free format source language. A good rule is to
fix errors in a particular line of code as they are discovered. In this way,
erroneously flagged program errors may then be passed as valid.

115

The following alphabetic characters are printed in the error indicator
columns and imply the corresponding message.

L — Label error. The label contains too many characters, contains invalid
characters, has been previously defined, or is an invalid symbol.

O — Op-code error. The op-code mnemonic has not been recognized as a
valid mnemonic.

R — Register field error. The register field expression could not be evaluated,
or when evaluated, was less than 0 or greater than 3, or the register
field was not found.

S — Syntax error. The instruction has violated some syntax rule.

U — Undefined symbol. There is a symbol in the argument field which has not
been previously defined.

A — Argument error. The argument has been coded in such a way that it
cannot be resolved to a unique value.

P — Paging error. A memory access instruction has attempted to address
across a page boundary.

W — Warning. The assembler has detected a syntactically correct but unusual
construction. The error will not be counted and will not inhibit the
production of the object module.

USING THE ASSEMBLER

The program is prepared by punching it into cards or otherwise trans-
ferring the program statements into a logical card image file. An ORG
statement usually occurs early in the program. If no ORG appears, the
assembler assumes an ORG 0 to occur before the first assembled statement.
An END statement must occur as the last statement. A program written in
the 2650 Symbolic Assembler Language should be preceded and possibly
followed by control cards for the particular computer system which is
being used. Figure 14 shows the control cards for an IBM/370 DOS
system. Although the control cards may vary from system to system, the
format of the actual 2650 source program will be the same in the system.

The object module produced by the Assembler during pass 2 is directed
to the FORTRAN standard device #2, in this instance the card punch. The
source program is read by the assembler at standard device #1, the card
reader. In some systems the device assignments may be altered if desired,
through assign cards. In other systems, however, the assembler must be
recompiled with the device numbers desired being set in the main program
module.

116

t, 	#3 'SP TPMCCI
..
 I.:LA ACRO?

* 	:ATO k •••• THIS 	PUNCHES
/1 AS.Sfity SYSOC4 ,4SYS601

L 1J..DUIXGO:A0ORK1469/00.1.
// 	TENT SY5004,,,•st75Q5*160
// 	EC CU UK
// Ut 	b=iri=E:to=512).xtoaxt.(71+i4£=f3

/*
-•// ASSN SYS006,SYSOV

/1 ASS6N SYSi-i0Y*SYS001
// 	I 	1 jSYS0/ 4PAC •, fkK44.69/n01
/1 EXTi.NT SYS007s 9 ,005,160
/1 EXEC J'XPIPASH

Figure 14

OBJECT MODULE

The format of the object module is: The first card or card image is always
all 9's.

bb999999999999999

The second and all subsequent data cards are in the following format. Logical
columns (1-5) contain the load address in decimal. Each three columns (6-71)
contain the data to be loaded in decimal. Each three columns represent a
byte of data; columns (6-8), (9-11), (12-14), etc. Beginning at the address
indicated in columns (1-5) each sequential data byte is to be loaded into
sequentially ascending addresses in memory. If a '999' appears in a particular
data byte position, that byte of information is to be ignored by the loader
and the contents of the corresponding location is not modified.

Because there is address and data on every card image, each card image is
independent. Therefore, the order of the data cards is unimportant and
patch cards may be prepared manually by preparing a data card in the object
module format.

The last two card images each serve a special purpose. The next to last
card contains a series of '-1' punches. This card is used to signal the end of
load information and has no other function.

The last card, which follows the '- 1' card, contains either the start
address (specified in assembler END statement) or zero in columns (1-5),
the remainder of the card contains '-1' punches which have no meaning.

117

ASSEMBLY LISTING

Figure 15 is a sample of a program listing produced by the 2650
Assembler. The following explanations are keyed to the listing.

1. Page heading — which displays the current version and level of the 2650
Assembler.

2. Line number — every assembled line is assigned a line number for the
programmer's convenience.

3. Address column — The numbers in this column are equal to the value
of the assembly Location Counter and indicate the address at which the
first byte (131) is to be loaded.

4. Label column — If there is a symbol in the Label Field of a line of code,
the value of the label will appear in this column. For example, in line
number 17 the value of the label SORT is H'0007'.

5. Data field — This field describes the data bytes which are to be stored
sequentially starting at the address in the Address Column.

6. Error columns — These columns may contain the error codes as detailed
elsewhere in this chapter.

7. Source code — This area of the listing reproduces the source code as it was
read by the assembler.

8. Page number — Every page of the listing is numbered sequentially.

9. Cumulative errors — This field indicates the total of errors detected by the
assembler during the assembly process. Warning messages (W) are not
included in this total.

11R

Figure 15. SAMPLE PROGRAM LISTING

119

170

CHAPTER IV

2650 SIMULATOR

122

INTRODUCTION

The 2650 Simulator is a FORTRAN program which allows a user to
simulate the execution of his program without utilizing the 2650 processor.

The Simulator executes a 2650 program by maintaining its own internal
FORTRAN storage registers to describe the 2650 program itself, the micro-
processor registers, the ROM/RAM memory configuration, and the input data
to be read dynamically from I/O devices. Multiple simulations of the same
program may be executed during a single simulation run. In addition,
statistical timing information may be generated.

The Simulator requires as input both the program object module pro-
duced by the 2650 Assembler and a deck of user commands. It produces
a listing of the user's commands, executes the program and prints ("displays")
both static and dynamic information as requested by the user's commands.

123

SIMULATOR OPERATION

GENERAL

Once the Simulator is loaded and started, it performs the following actions:

• Presets each register in simulated memory to a "HALT" instruction.
Thus, if the user's program attempts to branch to some undefined area of
memory, the current execution of the simulated program is terminated
and only relevant data is printed.

• Reads and stores the user's commands. These commands control the
performance of the Simulator during program execution. They are stored
in a simulator table for reference before, during, and after execution.

• Loads the 2650 object module into simulated memory.

• Starts the simulated program. The simulated program is started at the
address specified in the START command. If no START command is
submitted, the program is started in the location specified in the END
statement of the simulated program (see Assembler manual). If no location
is specified in the END statement, the Simulator starts in location 0.

• Oversees the execution of each instruction. Before an instruction is
executed, the Simulator checks the address of the instruction and the
address of the referenced memory location to see if either of these
addresses is referenced by any one of the user's commands. If so, the
command is executed. The Simulator then executes the current instruction,
updates all affected registers and retrieves the next instruction for
execution.

• Terminates the simulated program. The simulation is terminated either
by the execution of a "HALT" instruction, or by having executed a
preset number of instructions or by having satisfied the conditions of the
STOP. command.

• Once the execution of one simulation is complete, the Simulator prints
any statistical timing information requested (STAT), and proceeds with
the next simulation (TEND) or terminates itself (FEND).

SIMULATED PROCESSOR STATE

The Simulator maintains a number of FORTRAN integer cells which are
used to simulate the microprocessor's state, i.e. the general purpose registers,

the upper and lower program status bytes, the location counter or instruction
address register (IAR), the address of the instruction referenced and the
contents of the location referenced.

These simulated registers and status bits may be displayed dynamically,
(INSTR., REFER., TRACE.) i.e., while the simulated program is executing.
Also the general purpose registers and the status bytes may be altered dyna-
mically (SETR., SETP.).

SIMULATED MEMORY

The Simulator maintains a 2048 cell FORTRAN integer array which is
used to simulate read-write random access memory.

It is possible to configure parts of this memory into a ROM-RAM environ-
ment by using the SROM Command. If part of the simulated memory is set
to Read-Only and an instruction attempts to store data into that memory
segment, the Simulator bypasses storing the data, prints a warning message
and continues with the next program instruction.

Using Simulator commands, the user may change parts of memory before
the program executes (PATCH) and he may display parts of memory
dynamically (DUMP.).

The simulated memory is smaller in many cases than the total memory
size of the user's physical system. This restriction encourages the construction
of modular programs. Because the simulated memory is smaller than a
2650 page, it is not possible to fully test programs which utilize the 2650
paging system, i.e., programs larger than 8192 bytes.

SIMULATED INPUT/OUTPUT INSTRUCTIONS

The Simulator maintains a 200-byte First In, First Out (FIFO) buffer to
store the data read from a simulated input device. This buffer must be preset
by the user command, INPUT.

When any 2650 input instruction is simulated (REDE, REDC, REDD), the
Simulator accesses the buffer. If there is data in the buffer, the next byte of
data is inserted in the simulated register specified by the input instruction.
If the buffer contents have been exhausted, a warning message is displayed
on the simulator listing.

To simulate the execution of any 2650 output instruction (WRTE, WRTC,
WRTD), the Simulator takes the data byte from the register specified in the
output instruction and displays it along with the address of the output
instruction.

125

USER COMMANDS
GENERAL

The 2650 Simulator accepts commands which specify how the program is
to run and what data is to be recorded.

In any one Simulator run, the user may specify that his program be
executed any number of times. The user submits a new set of commands for
each execution. The final command set is followed by a final end card
(FEND), while all prior command sets are terminated with a temporary end
card (TEND) (Illust. III-1).

/FEND

/ COMMAND SET

TEND

EXECUTION - 3

COMMAND SET
- EXECUTION - 2

TEND

EXECUTION - 1
COMMAND SET

Figure 16. THREE SETS OF COMMANDS

Within any one command set, the user may specify:

• That the program execution start at a specific memory location (START).

• That the execution of the program be complete either when the number of
instructions executed equals a specified number (LIMIT) or when the
instruction at a specific address executes (STOP.) or when the simulated
program itself executes a "HALT" instruction.

• That statistics be displayed at the end of execution (STAT). The Simulator
accumulates a count of the total number of instructions executed, the
number of each type of instruction executed, and the total number of
2650 machine cycles expended. This information provides a measure of
efficiency by indicating how many 1-, 2-, or 3-byte instructions were
executed and may be used to calculate program timings.

• That certain areas of simulated memory be designated as Read-Only
(SROM) and are therefore inaccessible to any memory write operation.

• That the contents of memory be initialized with specific data (PATCH).

• That a FIFO (First In, First Out) buffer be used to simulate data read from
I/O devices (INPUT).

• That the processor state be recorded whenever a specific memory loca-
tion executes (INSTR.), whenever a specific memory location is referenced
(REFER.), or whenever any instruction executes which lies within a
specified range of memory addresses (TRACE.). The processor state
consists of the location counter, the instruction referenced and its con-
tents, the upper and the lower program status bytes, and the contents of
all the general purpose registers.

17A

• That an area of memory be dumped whenever an instruction at a specific
memory location executes (DUMP.).

• That certain general purpose registers (SETR.) or the program status
bytes (SETP.) be set dynamically, i.e., whenever a specific memory
location executes.

• That comments (**) be interspersed between control cards.
Some of these commands execute dynamically, i.e., when an instruction

at a specific memory location executes or when that location is referenced.
Since the simulator storage capacity limits the total number of locations
which may be retained simultaneously (while a program is executing), a
total of 30 memory locations may be specified on all the "dynamic"
commands submitted for any one execution, i.e., in any one command set.
These dynamic commands are identified by a trailing period (.), e.g., "STOP.".
This period is treated as a field separator, i.e., it is not treated as part of the
command name by the Simulator and is therefore optional. The description
for each dynamic command identifies which of its parameters count toward
the 30 "dynamic" command limit, i.e., the limit of 30 memory locations.

In addition, the number of DUMP. commands is limited to five (5); the
number of SETR. commands is limited to four (4); the number of SETP.
commands is limited to two (2); and the number of data read on all INPUT
cards in one command set is limited to 200.

All "dynamic commands" are executed before the simulated instruction
is executed.

For those commands which accept only one set of parameters (LIMIT,
SROM, START) only the last set of parameters encountered is used.

COMMAND FORMATS

Figure 17 contains a list of the commands, their parameters and a brief
description of the commands themselves. In addition, the Simulator treats
as a comment card, any card with two consecutive asterisks (**) starting in
column 1.

The Simulator accepts information in card image form. The entire card is
read in FORTRAN "A" format. A command must be complete on one card
as continuation cards are not allowed. Comments may appear in any order
within a command set.

The command name starts in column 1 and must appear as shown, except
for the optional period.

The field of characters which lies between the command name and its
parameters or between the parameters themselves is called a field separator.
A field separator may contain any number of characters, but none of these
characters may be hexadecimal characters (0-9, A-F). For the sake of clarity
in all the examples, the following field separators are used to indicate the
following functions:

127

FIELD SEPARATOR 	 FUNCTION

Identifies a command which counts toward the "dynamic"
command limit.

blank (s)
	

Separate a command from its parameters.

()
	

Encloses optional parameters.

Separates one set of parameters from another.

Separates one parameter from another within a set of
parameters.

; • • • ; 	Indicates that multiple parameters or sets of parameters are
legal. If a period flags a command, each of its parameter sets
counts toward the "dynamic" command limit. E.g., the
following sets of commands are identical:

1. INST. 100
INST. 200

2. INST. 	100; 200

The parameters themselves must be hexadecimal numbers (0-9, A-F).
The following labels identify parameters in Illustration 111-2:

LOC 	 Location or address of an instruction which is to be
executed or the address of data which is to be referenced.

NO 	 A number of data, e.g., the total number of instructions
to be executed.

FWA 	 First Word Address of some area of memory.
LWA 	 Last Word Address of some area of memory.
VALUE 	The value to which some location is to be set.
RO, R1 . R6 	General Purpose Registers 0-6.
PSL 	 Identifies Lower Program Status Byte.
PSU 	 Identifies Upper Program Status Byte.

128

COMMAND
NAME 	 PARAMETERS 	 DESCRIPTION

DUMP. 	LOC, FWA-LWA (; . . . ;LOC, FWA-LWA) Display the area of memory, FWA-LWA, when-
ever the instruction at LOC executes.

FEND 	None 	 Execute the last simulation and terminate the
entire run.

INPUT 	VALUE(; . . . ;VALUE) 	 Define the data to be read by simulated I/O
instructions.

INSTR. 	LOC(; . . . ;LOC) 	 Display the processor registers whenever the
instruction at LOC executes.

LIMIT 	NO 	 Specify the total number of instructions executed.

PATCH 	LOC,VALUE(; . . . ;LOC,VALUE) 	Initialize each memory location, LOC, to VALUE.

REFER. 	LOC(; . . . ;LOC) 	 Display the processor register whenever the in-
struction at LOC is referenced by another
instruction.

SETP. 	LOC(,PSL=VALUE) (,PSU=VALUE) 	Set the program status byte (lower and/or upper)
to VALUE whenever the instruction at LOC
executes.

SETR. 	LOC(,RO=VALUE). . .(R6=VALUE) 	Set the general purpose registers to VALUE
whenever the instruction at LOC executes.

SROM 	FWA-LWA 	 Specify the boundaries of Read-Only Memory.

START 	LOC 	 Start the simulated program execution at LOC.

STAT 	None 	 Display instruction statistics at end of program
execution.

STOP. 	LOC(; . . . ;LOC) 	 Terminate the program execution when the in-
struction at LOC executes.

TEND 	None 	 Execute the last simulation and prepare to read
the User Commands for the next simulation.

TRACE. 	FWA-LWA(; . . . ;FWA-LWA) 	 Display the processor registers whenever an in-
struction executes, which lies within the area of
memory, FWA-LWA.

Figure 17. COMMAND SUMMARY

129

COMMAND DESCRIPTIONS

The following command descriptions are alphabetized by command name.
As previously discussed all parameters are entered in hexadecimal notation
(0-9, A-F). All address parameters (LOC, FWA, LWA) are limited to the size
of simulated memory.

DUMP. DUMP SIMULATED MEMORY

This command causes the Simulator to display selected portions of
memory whenever the location counter matches LOC.

Each LOC counts as one "dynamic" command. The total number of
"dynamic" commands is limited to thirty (30). The total number of LOC's
submitted in DUMP. commands is limited to five (5).

DUMP. LOC,FWA-LWA(; . . . ;LOC,FWA-LWA)

Where: 	DUMP, is the command name.

LOC is the address of the 2650 instruction at which the
dump occurs.

FWA is the first address of the area to be dumped.

LWA is the last address of the area to be dumped. LWA must
be larger than FWA.

Example: 	DUMP. 5A,0-3FF 100-11A-21A
DUMP. EO-400-4FF

Note: More data may be dumped than was specified since the FWA dumped
always has a least significant digit of 0, e.g. 3Q 100, etc. Similarly, LWA
always has a least significant digit of F, e.g. 3F, 10F, etc.

i30

FEND 	FINAL END COMMAND

This command signals the Simulator that the preceding commands
complete the directives for the final simulator run. After FEND is read, the
Simulator performs the last simulation and comes to its final termination.

FEND

Where: 	FEND — specifies the command name.

Example: START 1A
TRACE 0, 100
TEND
START AA
PATCH 11, C2
FEND

INPUT 	DEFINE DATA FOR INPUT

This command loads data into a FIFO storage buffer from which the same
data is used to supply I/O instructions with input data. The first data point
specified becomes the first one accessed by a 2650 read instruction. The last
point specified becomes the last one accessed. Should the buffer become
empty during the simulated execution, an error message is printed, the
input register remains unchanged and the simulation continues.

Any number of these command cards may be submitted as long as the
total number of data specified in one run does not exceed the size of the
FIFO storage buffer (200).

INPUT VALUE(; . . . ;VALUE)

Where: 	INPUT — specifies the command name.

VALUE — specifies a 2-digit hexadecimal value.

Example: 	INPUT 	0, 1, 2, 3, 10, 1A, FF

131

INSTR. 	INSTRUCTION TRACE

This command sets a break point at the specified address. When the
instruction at this address executes, the Simulator prints out the internal
state of the simulated processor. The break point occurs before the instruc-
tion is executed.

Each address specified in an INSTR. command counts as one "dynamic"
command.

INSTR. 	LOC(; ... ;LOC)

Where: 	INSTR. — specifies the command.

LOC — specifies the address for a break point. The address
must be within simulated memory.

Example: 	INSTR. 	10E, 1A, 22
INSTR. 123-200-5E
INSTR. 74

LIMIT 	LIMIT THE NUMBER OF INSTRUCTIONS EXECUTED

This command determines how many instructions will be executed. If the
number given in the LIMIT command is exceeded before the instruction
specified by a STOP. command executes or before a 2650 HALT instruction
is simulated, the Simulator terminates the current program operation.

Without this command, the Simulator assumes a limit of 100010 instruc-
tions. The maximum LIMIT which may be specified is determined by the
maximum integer constant of the FORTRAN compiler used.

LIMIT NO

Where: 	LIMIT — specifies the command.

NO — is a number which determines the maximum number of
instructions to be executed.

Example: LIMIT 200
LIMIT 2F

132

PATCH 	PATCH SIMULATED MEMORY

This command alters the contents of memory before a simulation run. It
may be used to alter the contents of any byte in memory and overrides load
information in the object module for the duration of one simulation run.

Any number of these commands may be given in a simulator command
stream.

PATCH LOC,VALUE(; . . . ;LOC,VALUE)

Where: 	PATCH — specifies the command.

LOC — specifies the simulated memory address which is to
be changed.

VALUE — specifies a 2-digit hexadecimal number to be
stored at LOC.

Example: 	PATCH 0, 1F 1, 0 2. 5E
PATCH 102, EE

REFER. 	MEMORY REFERENCE TRACE

This command causes a break point to occur whenever one of the specified
addresses is referenced by a simulated instruction. During the break point,
the Simulator prints out the internal state of the simulated processor. The
data byte of immediate addressing instructions is handled like an ordinary
operand address.

Each address specified in a REFER. command counts as one "dynamic"
command.

REFER. 	LOC(;LOC. . . ;LOC)

Where: 	REFER. — specifies the command.

LOC — specifies the effective operand address for a break
point. The address must be within simulated memory.

Example: REFER. 3FF/21/18E
REFER. 200
REFER. 5, 50, 22F

133

SETP. 	SET PROGRAM STATUS BYTE

The SETP. command dynamically alters the upper and/or the lower pro-
gram status bytes. The specified program status byte is set when the
address parameter supplied in the command, LOC, equals the location
counter.

A SETP. command must set at least one program status byte. Up to two
SETP. commands may be given in a simulator command stream. Each LOC
submitted counts as one "dynamic" command.

The PSL and PSU may be entered in any order.

SETP. LOC(,PSL= VALUE) (,PSU=VALUE)

Where: 	SETP. — specifies the command.

LOC — specifies the simulated execution address where the
program status byte is to be set.

PSL — specifies that a value is to be entered into PSL.
PSU — specifies that a value is to be entered into PSU.
VALUE — specifies the 2-digit hexadecimal value to be
entered into the program status byte.

Example: 	SETP. 5A PSL=05
SETP. 10E, PSL=01 PSU= 00

134

SETR. 	SET GENERAL PURPOSE REGISTER

This command dynamically sets the general purpose registers during
simulated program execution. Using this command, any or all of the general
purpose registers can be set when the location counter value is equal to the
address parameter, LOC, supplied in this command.

A SETR. command without parameters is not permitted. Up to four
SETR. commands may be given in a simulator command stream. Each LOC
counts as one "dynamic" command.

Register identifiers may appear in any order.

SETR. LOCGRO=VALUE). .CR6=VALUE)

Where: 	SETR. — specifies the command.

LOC — specifies the simulated execution address where the
registers are to be set.

RO — indicates the general purpose register to be set. RO
R1 	always refers to general purpose register 0. R1, R2, and
R2 	R3 specify the registers in register bank zero. R4, R5
R3 	and R6 specify R1, R2, and R3 in register bank one.
R4
R5
R6

VALUE — specifies the 2-digit hexadecimal value to be stored
in the selected register.

Example: 	SETR. 10A R1=3F, R2=00, R3=5
SETR. 2F3 RO=FF, R5=00

135

SROM 	DEFINE THE BOUNDARIES OF READ ONLY MEMORY

This command allows the user to simulate a Read Only/Read Write
Memory environment. Whenever a 2650 instruction attempts to store data
in the area defined as Read Only, a warning message is printed on the simula-
tion listing. The data is not actually stored, but the simulation run continues.

SROM FWA-LWA

Where: 	SROM — specifies the command.

FWA — specifies the first address of the simulated ROM
area.

LWA — specifies the last address of the simulated ROM area.
LWA must be greater in value than the FWA. The addresses
specified are inclusive.

Example: SROM 100-FF

START 	START SIMULATION

This command specifies the address at which simulated execution begins.
The address specified in the START command supersedes the start address
in the load object module. The start address in the load object module is set
by an END statement during program assembly and is used by the Simulator
if no START command is given (see the 2650 Assembler Language Manual
for the END statement).

START LOC

Where: 	START — specifies the command.

LOC 	— specifies a start address for the program to be
simulated.

Example: START 10A
START 2

136

STAT 	DISPLAY INSTRUCTION STATISTICS

This command causes a list of 2650 instructions with the number of
times each was executed to be printed out at the end of the simulation run.

STAT

Where: 	STAT — specifies the command.

STOP. STOP SIMULATED EXECUTION

This command terminates the current simulated instruction execution
when the location counter matches the command argument, LOC.

Each LOC counts as one "dynamic" command.

STOP. 	LOC(; . . . ;LOC)

Where: 	STOP. — specifies the command.

LOC — specifies the instruction address at which simulated
execution ceases.

TEND TEMPORARY END COMMAND

This command signals the Simulator that the preceding commands com-
plete the directives for a simulator run. After the TEND is read, the
Simulator begins simulated execution of the 2650 program. Because TEND is
a temporary end, the Simulator assumes that there is another command
stream following it. The last command stream in a simulation run must be
terminated with a FEND (final end) command.

TEND

Where: 	TEND — specifies the command.

Example: 	PATCH 01, 15 OA, FF
TEND
START 100
PATCH 01, E2 OA, FF
FEND

137

TRACE. 	TRACE PROGRAM FLOW

This command causes break points to occur at each instruction within an
area of memory. The user specifies two addresses. If the simulated processor
accesses an instruction at an address that falls between the specified add-
resses, the Simulator prints out the internal state of the simulated processor.

Each set of FWA,LWA counts as one "dynamic" command.

TRACE. FWA-LWA(; . . . ;FWA-LWA)

Where: TRACE. — specifies the command.

FWA — specifies from what address the trace is in effect.

LWA — specifies to what address the trace is in effect. LWA
must be larger in value than FWA. The addresses specified
are inclusive.

Example: 	TRACE. 0-15F, 250-3FF
TRACE. 1-A, 3FF-40A
TRACE. 10-1A 50-5A 60-7A

,10

SIMULATOR DISPLAY (LISTING)

As the Simulator reads each command set, it prints the card images of the
command set and then executes the program. During program execution the
following commands result in some form of display:

DUMP.
INSTR.
REFER.
TRACE.

DUMP. results in the display of an entire area of memory while the last
three commands result in some form of trace, i.e., a display of the processor
state:

Instruction address register (IAR) or location counter
Instruction executed (INST)
Instruction referenced or effected (EADDR)
Contents of the instruction referenced or effected (EADDR)
Program status byte upper (PSU)
Program status byte lower (PSL)
General purpose registers (RO, R1, R2, R3, R4, R5, R6)

Figures 18 through 21 contain the printout or display output from one
Simulator run. Figure 18 shows the first command set, which contains
commands to:

• Start at location 0 (START)
• Initialize locations 55-5F, locations 61-6B and location 19 (PATCH)
• Dump locations 55-77 whenever either location 0 or location 3 executes

(DUMP)
• Trace locations 14-1A (TRACE)

Figures 18 and 19 show the results of the first command set:

• A dump of locations 55-77. Note that a larger area is dumped than was
specified.

• 30 traces
• A final dump of locations 55-77

When the program execution for the first command set is complete, the
Simulator reports:

• The number of machine cycles executed
• The number of instructions executed

Figure 20 shows the second command set. It is exactly the same as the
first command set except that it initializes locations 12 and 33 instead of
location 19.

The output of the second command set is just like the output of the first
command set except that it results in 33 traces, not 30.

139

(E0308) PSBIT PSOL 80 41 02 03 	0 4 45 06
0004 01 40 OC 07 00 07 00 00 00

.
(EAOCRI 8580 PSBL PO 81 R2 P3 R4 05 06
0002 01 61 C2 06 00 07 00 00 03

1E40001 PSRO PSRL RO 81 82 P3 R4 115 R6
0004 01 61 02 06 00 06 00,00 00

1E40081 P880 PSBL 80 01 42 43 R4 45 R6
0001 01 40 CO 06 00 06 00 00 00

1080041 P580 8501 80 RI R2 83 R4 RS R6
0003 01 80 06 05 00 06 00 00 00

(00000) PSBU PSBL 80 41 42 43 84 PS R6
01 40 03 05 00 05 00 00 00

4:04::81 PSETU PS81 PO R1 R2 R3 R4 85 86
0004

•
01 40. 08 04 00. 05 00 00 00

1E501 PSOU 8181 PO. RI 82 83 P4 45 46
0001 01 80 C8 04 00 05.00.00 00

1E40041 0548 PS81 40 42 R2 83 44 R5 Rb
0554 0003 01 40 01 04 00 04 00 00 00

0,000 (EADCR) . P000 P581 PO PC .2 83 44 R5 	PO
2218 3008 01 40 04 04 00 04 00 00 CC

EAVCP
(264

1E40041
ooel 	-

TPACE (000060

P88))
01

PSPL
80

FO 	41
04 03

P.2
00

43 44
04 0.

V5 	P.
CC 	0,I

84000 (600041 8504 0501 FC, 	11).2 43 84 40
(050 0002

• •
 Cil. 40 CI 	,0,0 00, 03 00 00 0,

04004 (140181 05511, POLL J 41 82 R3 R4 R5 P6
(010 0004 Oi 4 . 03 00 Cl.:, 	00

•
FAV04 11400.1 .'SBU POOL 0, 	P1 R2 R3 R4 p5 R6
(563 0000 01 80 00 03 00 00 00

AEC, (840001 0002 PSC' 2 83 P4 45
2002 01 00 0 02 00 30 0)

c iE4004) 5nI. 60 	AI 22 Ri 0.4 10. 	04,
C 40 02 02 00 02 00 00 00

i::::0) Ile)) TOIL FO 	2.1 23 ,0 .5 46
C 0030 01 C2 22 2i 00 00

FADER (81014) PS,)'SIL 02 ,3 64 P5 06
0056 0031 01 OU CO 01 00 01 OD 00 00

0
 C064

84008

IA. EA0DR
0014 • .10014.,0T 0061,3,-
TRACE 0098880
• TAR 	 MST'
0017 	.40C4i0 	0055,1-
744CF coRMAND
JAR. 	•• 	• INST

TRACE••(.0mMANC
0010 	CCMI.0 ' 	03 	:.

'0914 Lcr
160 	

;nT 0061,3..L

. 100. 	 INS?
001T 	0c14,0 	9055,1
TRACE (000460
14F 	

' J14 	C.:MInT OA
?FACE C[84AKn
(AR 	 INST
0014 	LC00.0 	0061.3.-
TPACF COMMAND
14P 	 1101
COI, 	41c4,0 	3075,1
T0410 C.:PMAND
TAR 	 1608
0014 	0001,0 	04
048(0 C:90460
TAR

0.7.4.(4.,:-.F.
TAR 	 INST
0017 	4704,0 	0055,1

001B

80070
C063

EAPOR
CCSB

EADCR
CCSB '

EADCR
0066

84008

::::R
(018

TRACE COMMAND
148 84004
0014 	CCPT 04
TRACE 5570600
IAP 	 INST
0014 	1224.0 	0061,3.-
TRACE COMMAND
IAR)NST

	

4000,0 	0055,1 0017
TRACE CCMMAND
1AR 	 INST
0014 	CCM1,0 	04
TRACE COMMAND
144 1NST •
0014

	

LCCA,0 	0061,0.-
TRACE COMMAND

144
0017 ACO:T 0055,1
TRACE CCMMAND
100
001.8

COMMAND(
OA

TRACE

stool' 	0,)
PA1CP 55,3 56,1 57,2 il1.7
PATO- 54,5 58,4 50,1 50,2 18.1
441•:1- 500
cliz, 41,0

,2,0 62,0 64
PAT0, 07,2 66.; 6v
01.00
CAMP U,v5,77
047C1' 	19,55
TFAC? 	14,1.8
58Nn

0CM.4N1 20mm
0050 	17 OT
0060 	00 00
(1070 	40 40
TRACE CfmmANC
148 	 INST 	 TAC7.R [E40CRI 	P58U PSAL 	00 RI P2 P3 44 .5 Po
6.,7.1.4 	1(20.::: 	 5044 	0001 	01 	CO 	60 04 DO CO 00 00 00

TRACI C1RMAN0
14R 	 1NST 	 05000 TE40C41 	P580 oS20 	PO 41 .2 .3 44 85 P.O

0017 	4014,1 	 000. 	3000 	01 	 01 04 00 CA 0(00 00

TRACE cCP4AN7
108 	 80201 4100181 	PiliL, PSE, 	PO 41 =2 ,3 0 4 1-,. 48

0010 	1(47,0 	03 	 0010 	0000 	01 	40 	CI 61 00 04 00 01 00
1080E (C01110
140 	 INSI 	 00008 14000,1 	PS130 8501 	PO R1 42 P3 FA P5 86 •

0614 	1.004,0 	0061,3,- 	CC64 	0002 	01 	80 	Cl 09 00 OA 00 00 00
TRACE 02mMANC
IAF 	 IN5T 	 EA[:08 (800R) 	106U PSBL 	40 RI 82 P3 R4 P5 06

001? 	0054.0 	 COP 	0001 	CL 	40 	CP 09 00 09 OU 00 DO
1.0CP C0MmA50
I4F 	 8058 	 CADDR (,ADDR1 	eseg P581 	FD 40 R2 P3 P4 85 86...

0014 	C501,0 	06 	 COST 	0000 	01 ' 40 	C3 09 OU 09 00 00 oq. . •
TFACC Crmmni..0•
/A. 	.1951 	 EAPOR (EADCR) 	P500 PSBL 	et) Ri 42 8344 P5 86
0014 	1E1.0,0 	0161.0,-. 	' 0060 	0008 	01 	80. 	03 08 00.09 00 00 00 --
TRACE COMMAND 	•• 	 • 	.
14.8' 	 1N5T 	 EADCR 1E40041 	PSEIU OSOL 	FO 01 82 R3 R4 85' 126 •• '

(roil 	4004,0. 	0055,1' •• 	.0050 • 0002 	01 	40 	08 08 00 08 00 00 00
TRACE 0006080
TAR 	 INST 	 F4024 (EADCR) 	PSOU PS191 	PO 41 R2 83 44 155 06
0010 	0001,0 	OA 	 0014 	0004. 	01 	40 	CA 06 00 08 00 00 00
TRACE (089040 	 '
14P 	 1NST 	 EACIOR 15.40001 	PSBU PS81 	RD 41 R2 R3 R4 45 46
0014 	1(64,0 	0061,3.- 	coee 	poos , 	01 	21 	00 07 00 08 00 00 03

TRACE COMMAND
140 	 INST 	 EADOR (E4004) 	008U 4540 	PO 41 02 P3 R4 05 R6

0017 	0060,0 	0055,1 	 CC5C 	0003 	01 	61 	09 07 00 07 00 00 00

15 	TB .65 00 CI Cl 02 (3 	.)5 C4 C3 72 01 00
CC 00 01 01 	(2 Ct 09 CO C2 01 41 40 40 40.
42 40 43 40 (0 CJ CO 4C 40 4C 42 46 40 40

Figure 18. FIRST COMMAND SET
ten

TRACE CCMMAND
140 	 INST 	 04400 IEADORI 	PSOU AM
0014 C401.0 04 	 0418 0004 	01 40
40,45430 CURE
0050 	IT 07 15 IR 65 00 Cl 02 42 03 05 04 C3 02 01 00
0060 	00 CO 01 02 02 04 C8 C6 C2 CO 03 41 40 4D 40 40
0070 	40 44 40 40 40 40 CO CO OC 40 40 4C 40 40 40 40

PO R1 R2 R3 R4 R5 146
01 01 OD 01 00 00 00

NO. CF MACHINE CYCLES EXECUTED . 	232

NO. CF INSTRUCTIONS EXECNTEC 	 73

Figure 19. FIRST COMMAND SET, Cont.
141

	

OSSA 	P581 	RO RI R2 RI R4 05 R6

	

01 	08 	08 OB 00 08 00 00 00

	

058A 	P581- 	PO RI R2 P3 P4 P5 46

	

01 	48 	01 08 00 O4 00 00.00

	

PS811 	PSPL 	RD RI R2 R3 R4 R5 RA

	

01 	48 	01 OR DO OA 00 00 OD

	

PSBA 	P581 	RO #1 R2 k3 R4 R5 RA

	

01 	86 	01 OA 00 CA 00 00 00

	

P5B0 	P581 	PO Al, R2 R3 R4 R5 R6

	

01 	48 	02 OA 00 09 00 00 00

PSEIU PSAL
01 48

PSBO POOL
01 88

PS8A PSAL
01 48

PSBA OSAL
01 48

PO RI R2 P3 R4 R5 46
03 04 00 09 00 00 00

PO RI R2 RI R4 R5 Rb
03 09 00 09 00 00 00

PO RI R2 R3 R4 R5 RA
OR 09 00 08 00 00 00

PO RI R2 R3 04 R5 R6
OA 09 00 08 00 00 00

PSEILI PSBL 	RO RI R2 03 R4 RN R6
01 	29 	CO 08 00 08 00 00 00

PSTIA PSOL 	FO RI R2 R3 R4 135 P6
01 	69 	C9 08 00 07 00 00 00

P5811 PSBL
01 48

PSBU PS81
01 69

P580 PSAL
01 69

RO RI R2 R3 R4 R5 R6
CD 08 00 07 00 00 00

RO RI R2 R3 R4 R5 R6
C3 07 00 07 00 00 00

PO RL R2 53 P4 R5 RA
C2 07 00 06 00 00 00

START 00
PATCH 55,0 56,1 57.2 58,2 55,3
PATCH 51.5 58,4 56,3 5Dr2 !Ell
PATCH 50.0
PATCH 61,0
PATCH 62,0 63,0 64,1 65.1 66,3
PATCH 67,2 68,9 69,8 64.2 68,1
CAMP 3,55,77
DUMP 0,55,77
TRACE 14,14
PATCH 33,00
PATCH 12,08
FEND

rcrpnho CAMP
0050 	IT 07 15 18 65 00 CI 02 02 03 05 04 C3 02 01 00
0260 	OD 00 00 00 01 01 03 CZ 09 OA 02 01 40 40 40 40
0070 	40 4D 40 40 40 40 CO CO 00 40 40 4C 40 40 40 4C
TRACE COMMAND
IAR 	 INST 	 EADOR (EADCR)
0014 1C08,0 0061,3, 	C068 0001
TRACE CCMMAND
TAR 	 INST 	 EADDR IPAOCR)
0017 4000,0 0054,1 	 COSE 0000
TRACE COMMAND
TAP 	 INST 	 CADOR TEADCR1
0014 CC81,0 OA 	 C018 000A
TRACE COMMAND
IAR 	 INST 	 EADOR (MORI
0014 1060,0 0061,3,- 	C066 0002
TRACE COMMAND
TAR 	 INST 	 EACOR 10/10017)
0017 ACCA,0 0054,1 	 0C5F 0001
TRACE CCMMAND
IAP 	 MST 	 EADCR ((ODOR)
001A C10I,0 OA 	 C018 000A
TRACE 66,96650
144 	 INST 	 EADDR TRADER!
0014 6000.0 0061,3,- 	0060 0008
TRACE COMMAND
IAR 	 INST 	 EADOR (EADOR)
0017 0004.0 0054,1 	 0050 0002
TRACE COMMAND
TAR 	 INST 	 EA000 (EADCR)
001A CCM1,0 OA 	 0018 0004
TRACE (ERRAND
IAR 	 INST 	 EADOR (EADCR)
0014 1C04r0 0061,3, 	006E1 0009
TRACE COMMAND
TAB 	 INST 	 EACOR (0400(1
0017 (CC6,0 0)54,1 	 0050 5003

TRACE COMMAND
IAR 	 INST
001A 	CCM1,0 	04
TRACE CCMMAND
TAR 	 (NOT
0014 	LCCA,0 	0061,3,
TRACE COMMAND
!AR 	 INST
0017 	1004.0 	0054,1
TRACE COMMAND
100 	 INST
001A 	COMI,0
TRACE COMMAND
TAR 	 INST
0014 	LCCA,0 	0061,3,
TRACE CCMMAND
TAR 	 INST
0017 	ACE4,0 	0054.1
TRACE CCMMAND
TAP 	 INST
00IA 	CCM1,0 	OA
TRACE CCMMAND
IAR 	 INST
0014 	LCCA,0 	0061,3,
TRACE (ERRAND
IAR 	 TROT
0017 	ACCA,0 	0054,1
TRACE CCMMAND
TAR 	 INST
001A 	CCM1,0 	OA
TRACE CCMMAND
TAR 	 INST
0014 	1000,0 	0361,3,-
TRACE COMMAND
TAR 	 INST
0017 	0008,0 	0054,1
TRACE CCRMAA0
TAP 	 INST
DOIA 	0161,0 	OA
TRACE CCMMAND
TAR 	 INST
0014 	LOCA,0 	0061,3,
TRACE CCMMAND
IAA 	 INST
0017 	0008,0 	0054,1
TRACE CCMMAND
TAP 	 INST
001A 	CCMI,0 	04
TRACE CCMMAND
IAR 	 INST
0014 	10100,0 	00600,
TRACE COMMAND
140 	 INST
0017 	ACC4,0 	0054.1

	

P58U PSAL 	PO RI R2 R3 P4 P5 R6

	

01 	48 	07 07 00 06 00 00 00

	

P5130 PS81 	PO RI R2 R3 R4 R5 R6

	

01 	88 	07 06 00 06 00 00 00

	

0588 PSBL 	RO RI R2 R3 #4 R5 RA

	

01 	48 	03 06 DO 05 00 00 00

	

P580 PSEIL 	PO RI R2 R3 R4 05 R6

	

01 	48 	ca 06 oo as oo 00 oo

	

PSBU PSBL 	00 RI R2 P3 RA P5 R6

	

01 	88 	08 05 00 05 00 00 00

	

P060 PSOL 	RO RI R2 R3 R4 R5 R6

	

01 	48 	Cl 05 00 04 00 00 00

	

PS80 PSBL 	PO RI R2 43 R4 R5 56

	

01 	48 	04 05 00 04.00 00 00

	

PSBLI P051 	80 RI 112 #3 04 R5 A6

	

01 	88 	C4 04 DO 04 00 00 00

	

PSBLI PS131 	PO RI R2 P3 R4 P5 R6

	

01 	48 	01 04 00 03 00 00 00

	

00006 ((ADDS)PS80 PS81 	PO RI 0.2 P3 P4 R5 Rb

0010 	3008 01 	40 	C3 04 00 03 00 00 00.

AnCil 00.0[01 	05012 PSBL 	FD RI R2 R3 R4 R5 R6
0063 	0000 	01 	82 	03 03 00 03 00 00 00

EAP A (04006) 	P550 PSBL PO RI R2 01 R4 65 R6
C057 	0002 	01 	08 	CO 03 00 02 00 00 00

EADCR 1010001 	P080 PS01, • 	40 RI R2 R3 R4 P5 Rb
0018 	0004 	48 	02 03 00 02 00 00 00

EADDR 1E40", P 11 0 8 P1 RO RI R2 R3 R4 P15 R6
10620000 	88 	02 02 00 02 00 OD 00'

EADDR ((ODOR) 	01110 PSBL 	80 R1 R2 R3 R4 P5 RA
0056 	0001 01 	OR 	00 02 00 01 00 00 00

Figure 20. SECOND COMMAND SET

EACOR 4E60001
CCI8 000A

5ADOR (60006)
0067 0002

EADOR TE4DDR1
CC58 0004

EADOR (040041
0018 0001

EADOR 1E40CR1
C066 0003

EACDR (EOM
C054 0005

EACOR TEADDR1
0016 000A

EADDR (EADOR)
OCAS 0001

EADCR IRADORT
0059 0003

EACIOR (MORT
0018 0004

EACCR (EADDRI
CC64 0001

EAOCR (EADDRI
0058 0002

1 4 2.

TRACE COMMAND
TAR INST SAVOR (04000) PSOU POOL PO RI 82 R3 R4 05 86
2040 CCMI,0 04 C01R 0004 01 	48 01 02.00 01 00 00 00
TRACE 0008841
IAR (NOT EADOR (16000 POW POOL RO 	11/ 02 R3 04 05 86
0014 1014,0 0061,1,- 0061 0000 01 	Ps 01 01 00 01 00 00 00
TRACE CCNMAND
IAR (NOT E4008)EADCR) PSSU POOL 80 RI R2 03 P4 05 R6
0017 0000,0 0054,1 CC55 0000 01 	08 CO 01 00 oo op 00 00
TRACE 0090440
140 I8ST EADCR TRAITOR) PSSU POOL 00'01 82 83 R4 R5 06
0014 CO81,0 OA 0010 000 01 	08 00 01 od 00 00 00 oa
COMMAND OWN,
0060 	17 07 15 LA 45 00 01 02 C2 C3 05 04' 03 02 01 00
0060 00 00 01 02 03 04 OR C7 C3 CO 33 01 40 40 40 40
0070 40 40 AT 40 40 40 CO CO 00 40 40 40 40 40 40 40

60. OE MACHINE CYCLES EXECUTES = 	252

AO. Cl INSTRUCTIONS EXECUTEC = 	79

Figure 21. SECOND COMMAND SET, Cont.
143

144

APPENDIXES

A7

ARO
RAN
CE

2606
256x4

R/W RAM

DATA I/O

ADDRESS
OUTPUTS

2650 PROCESSOR

ADR 7

ADR 0

WAN

WRP

OPREQ

M/IO

•

A
•

A A7 	 2606

	

W.

 1

RNV RAM
256x4

ARO

DATA I/O

4, ► 	
II 	It
oil it.

411

DB 7

D8 0

D/C

►	

OPACK 4111-4

D

< 0

SI A t ZZ
+5V CLOCK -=

1

DATA
BUS

APPENDIX A

MEMORY INTERFACE

Figure 22 shows a complete interface between the 2650 and a 256 x 8
R/W random access memory. Since the memory chips are MOS they can be
driven directly by the address lines and the control lines. The gates shown
are assumed to be standard 7400 series TTL so that some signal buffering is
assumed to be necessary. If CMOS or 74LS gates are used, some of the
buffering inverters may not be necessary. The same is true of the data bus.
Depending on the number and nature of the I/O devices being interfaced, it
may or may not be necessary to buffer the data bus.

Because the data in and data out signals for the memory chips are bussed
together, care must be taken to avoid overlap of drivers on the data bus. In
this example, the problem is solved by using the write pulse into the memory
as the chip select input instead of using the R/W line as is conventionally
done. The R/W output from the processor is a level and is valid when
Operation Request is true. Write Pulse from the processor is gated with the
OPREQ and M/IO signals to assure proper operation.

For a large memory the next address line (ADR8) could be gated into the
chain that generates the chip select signals, with similar write pulse
generation for the higher order memory.

The OPACK signal is assumed to be false for the duration of all memory
operations. This eliminates some gating from that control input. No
problems will be encountered with this approach as long as the memories are
fast enough for the clock speed being used with the processor. At a cycle
time of 2.4ps, data must be returned to the processor by 1ps or less time
from the OPREQ leading edge.

RESET

Figure 22.

147

APPENDIX B

I/O INTERFACE

Figure 23 shows one of many possible methods for buffering the data bus
and interfacing it to several devices. There are advantages to be gained by
using the Signetics 8T26. It has a PNP input buffer that keeps its low input
level current at 20012A instead of 1.6mA. This lightens the load on the
processor bus drivers and allows the processor to interface to several 8T26's
if necessary. The 8T26 has four complete driver/receiver pairs in a package,
so two packages can fully buffer the 8-bit data bus.

The control signals generated for use with I/O interfaces are very
straightforward. Combining M/IO with OPREQ generates a signal that can
often be used conveniently at the I/O devices instead of having each device
derive the signal individually. In the figure it is gated with the Read/Write
information in order to control the bus buffer.

Each I/O device must handle four basic processor interface functions:
(a) bus interface
(b) data transfer logic
(c) device selection logic
(d) transfer acknowledge logic

Depending on the nature of the complete system and the particular I/O
device, these functions can be either extremely simple or fairly complex.

DBUS 0

DBUS 7

OPRE

) ADDRESS LINES TO MEMORY

TO
MEMORY

BUS

DATA BUS
TO

— ADDITIONAL
I/O DEVICES

DRIVER
ENABLE

BT26 8T26

M/IO

E/NE

2650

RECEIVER
ENABLE

I/O OPERATION

r
r— 8726 ,-- 1-4 8T26

ACKNOWLEDGE
LOGIC

DATA
TRANSFER

LOGIC
OPACK

ADR 0

ADR 7

DII:.4A

DEVICE

I 	

SELECTION
LOGIC De!gf. I

DEVICE L EXTERNAL

Figure 23.

148

APPENDIX C

INSTRUCTIONS, ADDITIONAL INFORMATION

The 2650 uses variable length instructions that are one, two or three
bytes long. The instruction length is determined by the nature of the
operation being performed and the addressing mode being used. Thus, the
instruction can be expressed in one byte when no memory operand
addressing is necessary, as with register-to-register or rotate instructions. On
the other hand, for direct addressing instructions, three bytes are allocated.
The relative and immediate addressing modes allow two-byte instructions to
be implemented.

The 2650 uses explicit operand addressing; that is, each instruction
specifies the operand address. The first byte of each 2650 instruction is
divided into three fields and specifies the operation to be performed, the
addressing mode to be used and, where appropriate, the register or condition
code mask to be used.

Function 	Class Register
Field 	Field Field

7 6 5 4 3 2 1 0

The CLASS field specifies the instruction group, the major address mode
and the number of processor cycles required for each instruction. The
CLASS field also specifies, with one exception, the number of bytes in the
instruction. The following table shows the specifications for each class.

CLASS
FIELD

INSTRUCTION
GROUP

ADDRESS
REGISTER

BYTE
LENGTH

DIRECT
CYCLES

0 Arithmetic Register 1 2
1 Arithmetic Immediate 2 2
2 Arithmetic Relative 2 3
3 Arithmetic Absolute 3 4
4 Control (inc. rotate) 1 2
5 Control 1-2 3
6 Branch Relative 2 3
7 Branch Absolute 3 3

Within the arithmetic groups (classes 0, 1, 2, and 3) the function field
specifies one of the eight operations as follows:

FUNCTION 	ARITHMETIC
FIELD 	 OPERATION

0 	 LOAD
1 	 EXCLUSIVE OR
2 	 AND
3 	 INCLUSIVE OR
4 	 ADD
5 	 SUBTRACT
6 	 STORE
7 	 COMPARE

149

Within the branch group (classes 6 and 7) the function field specifies one
of eight operations as follows:

FUNCTION 	 BRANCH
FIELD 	 OPERATION

0 	 Branch On Condition True
1 	 Branch To Subroutine On Condition True
2 	 Branch On Register Non-Zero
3 	 Branch To Subroutine On Register Non-Zero
4 	 Branch On Condition False
5 	 Branch To Subroutine On Condition False
6 	 Branch On Incrementing Register
7 	 Branch On Decrementing Register

There is very little pattern to the use of the function field within the
control group (classes 4 and 5).

The register field is used to specify the index register, to specify the
operand source register, to specify the destination register, or a condition
code mask. For the register-to-register and the indexed instructions, register
zero is implicitly assumed to be the source or the destination of the
instruction. For all other instructions that involve a register, the register field
allows any of four registers to be specified, except for indexed branch
instructions which require that register 3 be specified.

Conditional branch instructions utilize the 2 - bit register field as a
condition code mask field. A few instructions use the register field as part of
the operation code and consequently allow no variation in register usage.

150

APPENDIX D
INSTRUCTION SUMMARY

SIGNETICS 2650 PROCESSOR

ALPHABETIC LISTING

HEX OP Pg. HEX OP Pg. HEX OP Pg.

8C ADDA 57 98 BCFR 75 BC BSFA 81
8D 99 BD
8E 9A BE
8F

84 ADDI 56 1C BCTA 74 B8 BSFR 81
85 1D B9
86 1E BA
87 1F

88 ADD R 56 18 BCTR 74 7C BSNA 82
89 19 7D
8A 1A 7E
8B 1B 7F

80 ADDZ 55 FC BDRA 77 78 BSNR 82
81 FD 79
82 FE 7A
83 FF 7B

4C ANDA 61 F8 BD R R 77 3C BSTA 80
4D F9 3D
4E FA 3E
4F FB 3F
44 ANDI 60 DC BI RA 76 38 BSTR 80
45 DD 39
46 DE 3A
47 DF 3B
48 ANDR 60 D8 BIR R 76 BF BSXA 83
49 D9
4A DA
4B DB
41 ANDZ 59 78 79 5C BRNA 9F BXA
42 5D
43 5E

5F
9C BCFA 75 78 EC COMA 67 58 BR NR
9D 59 ED
9E 5A EE

5B EF

151

HEX OP Pg. HEX OP Pg. HEX OP Pg.

E4 COM I 66 40 HALT 90 93 LPSL 69
E5
E6 92 LPSU 68
E7

E8 Om R 66 6C I 	RA 63 CO NOP 87
E9 6D
EA 6E
EB 6F

E0 C0MZ 65 64 125R I 62 77 PPSL 71
El 65
E2 66 76 PPSU 70
E3 67

68 IOR R 62 30 RE DC 85
75 CPSL 72

69 31
74 CPSU 71 6A 32

6B 33

94 DAR 89 60 IORZ 61 70 REDD 84
95 61 71
96 62 72
97 63 73

2C EOR A 65 OC L9'DA 53 54 R E DE 85
2D OD 55
2E OE 56
2F OF 57

24 EXR I 64 04 LODI 52 14 R ETC 83
25 05 15
26 06 16
27 07 17

28 E0R R 64 08 LOD R 53 34 RETE 84
29 09 35
2A OA 36
2B OB 37

20 EP Z 63 00 L9iDZ 52 DO RRL 67
21 01 D1
22 02 D2
23 03 D3

152

HEX OP Pg. HEX OP Pg.

F4 TM I 88
50 RRR 68 F5
51 F6
52 F7
53 B5 TPSL 73
13 SPSL 70 72 B4 TPSU
12 SPSU 69 86 BO WRTC
CC STRA 55 B1
CD B2
CE B3
CF FO WRTD 86
C8 STR R 54 F1
C9 F2
CA F3
CB D4 WRTE 87
C1 STRZ 54 D5
C2 D6
C3 D7

AC SUBA 59 9B ZBR R 73
AD BB ZBSR 79
AE
AF

A4 SUBI 58
A5
A6
A7

A8 SUBR 58
A9
AA
AB

AO SUBZ 57
Al
A2
A3

153

SIGNETICS 2650 PROCESSOR

NUMERIC LISTING

HEX OP Pg. HEX OP Pg. HEX OP Pg.

00 LODZ 52 24 EOR I 64 44 ANDI 60
01 25 45
02 26 46
03 27 47

04 LODI 52 28 EOR R 64 48 ANDR 60
05 29 49
06 2A 4A
07 2B 4B

08 LOD R 53 2C EORA 65 4C AN DA 61
09 2D 4D
OA 2E 4E
OB 2F 4F

OC LODA 53 30 REDC 85 50 R RR 68
OD 31 51
OE 32 52
OF 33 53

12 SPSU 69 34 RETE 84 54 REDE 85
35 55

13 SPSL 70 36 56
37 57

14 RETC 83 38 BSTR 80 58 BRNR 78
15 39 59
16 3A 5A
17 3B 5B

18 BCTR 74 3C BSTA 80 5C BRNA 78
19 3D 5D
1A 3E 5E
1B 3F 5F

1C BCTA 74 40 HALT 90 60 IORZ 61
1D 61
1E 62
1F 63

20 EcoRZ 63 41 ANDZ 59 64 10R1 62
21 42 65
22 43 66
23 67

154

HEX OP Pg, HEX OP a • g• HEX OP Pg.

68 IORR 62 88 ADDR 56 A4 SUBI 58

69 89 A5

6A 8A A6

6B 8B A7

6C 10RA 63 8C ADDA 57 A8 SUBR 58

6D 8D A9

6E 8E AA

6F 8F AB

70 REDD 84 92 LPSU 68 AC SUBA 59

71 AD

72 93 LPSL 69 AE

73 AF

74 CPSU 71 94 DAR 89 BO WRTC 86

95 B1

75 CPSL 72 96 B2

97 B3

76 PPSU 70 98 BCFR 75 B4 TPSU 72

99

77 PPSL 71 9A B5 TPSL 73

78 BSNR 82 9B ZBRR 73 B8 BSFR 81

79 B9

7A BA

7B

7C BSNA 82 9C BCFA 75 BB ZBSR 79

7D 9D

7E 9E

7F

80 ADDZ 55 9F BXA 79 BC BSFA 81

81 BD

82 BE

83

84 ADDI 56 AO SUBZ 57 BF BSXA 83

85 Al
86 A2
87 A3

155

HEX OP Pg. HEX OP Pg.

CO NOP 87 E4 CMI 66

E5
E6
E7

Cl STRZ 54 E8 COM R 66

C2 E9

C3 EA
EB

C8 STRR 54 67 EC COMA

C9 ED

CA EE

CB EF

CC STRA 55 FO WRTD 86

CD F1

CE F2

CF F3

DO RRL 67 F4 TMI 88

DI F5

D2 F6

D3 F7

D4 WRTE 87 F8 BDRR 77

D5 F9

D6 FA

D7 FB

D8 BI RR 76 FC BDRA 77

D9 FD

DA FE

DB FF

DC BI RA 76

DD
DE
DF

E0 COMZ 65
El
E2
E3

icS

2650 INSTRUCTIONS

ORGANIZED BY FUNCTION

LOAD/STORE Pg. ARITHMETIC Pg. ARITHMETIC Pg.

00 LODZ 52 80 ADDZ 55 68 !ORR 62
01 81 69
02 82 6A
03 83 6B

04 LODI 52 84 ADDI 56 6C IORA 63
05 85 6D
06 86 6E
07 87 6F
08 LODR 53 88 ADDR 56 20 EORZ 63
09 89 21
OA 8A 22
OB 8B 23
OC ODA 53 8C ADDA 57 24 EORI 64
OD 8D 25
OE 8E 26
OF 8F 27
Cl STRZ 54 AO SUBZ 57 28 EORR 64
C2 Al 29
C3 A2 2A

A3 2B
C8 STRR 54 A4 SUBI 58 2C EORA 65
C9 A5 2D
CA A6 2E
CB A7 2F
CC STRA 55 A8 SUBR 58 41 AN DZ 59
CD A9 42
CE AA 43
CF AB

AC SUBA 59 44 ANDI 60
AD 45
AE 46
AF 47

60 IORZ 61 48 ANDR 60
61 49
62 4A
63 4B
64 10R1 62 4C ANDA 61
65 4D
66 4E
67 4F

157

BRANCH Pg. SUBROUTINE BRANCH Pg. COMPARE Pg.

18 BCTR 74 38 BSTR 80 EU COMZ 65
19 39 El
1A 3A E2
1B 3B E3

1C BCTA 74 3C BSTA 80 E4 COM! 66
1D 3D E5
1E 3E E6
1F 3F E7

98 BCF R 75 B8 BSFR 81 E8 CS MR 66
99 B9 E9
9A BA EA

EB

9C BCFA 75 BC BSFA 81 EC COMA 67
9D BD ED
9E BE EE

EF

58 BRNR 78 78 BSNR 82 INPUT/OUTPUT
59 79 30 REDC 85
5A 7A 31
5B 7B 32
5C BRNA 78 7C BSNA 82 33
5D 7D 70 REDD 84
5E 7E 71
5F 7F 72
D8 BIRR 76 BF BSXA 83 73
D9 BO WRTC 86
DA B1
DB B2
DC BI RA 76 BB ZBSR 79 B3
DD FO WRTD 86
DE F1
DF F2
F8 BDRR 77 SUBROUTINE RETURN F3
F9 14 R ETC 83 54 REDE 85
FA 15 55
FB 16 56
FC BDRA 77 17 57
FD 34 RETE 84 D4 WRTE 87
FE 35 D5
FF 36 D6
9F BXA 79 37 D7

9B ZBRR 73

PROGRAM STATUS
MANIPULATION 	Pg. MISCELLANEOUS Pg.

92 LPSU 68 CO NOP 87

93 LPSL 69

12 SPSU 69 40 HALT 90

13 SPSL 70

74 CPSU 71 F4 TMI 88
F5

75 CPSL 72 F6
F7

76 PPSU 70 94 DAR 89
95

77 PPSL 71 96
97

B4 TPSU 72

B5 TPSL 73

ROTATE INSTRUCTIONS

DO 	RRL 	67
D1
D2
D3

50 	RRR 	68
51

52
53

159

APPENDIX E

SUMMARY OF 2650 INSTRUCTION MNEMONICS

In these tables parentheses are used to indicate options. In no case are they
coded in any instruction. The following abbreviations are used:

✓ — register expression, must evaluate to 0 < r < 3.
✓ — value expression
* — indirect indicator
a — address expression
x — index register expression
X — index register expression with optional auto-increment or auto-

decrement
NOTE:
— the use of the indirect indicator is always optional.
— when an index register expression is specified, it can be followed by +1 or

which indicates use of auto-increment or auto-decrement of the index
register. Example:

LODA, 0 	DPR,R3,+

BXA, BSXA are exceptions and do not permit auto-increment or auto-decrement.
even though an address expression is specified in a hardware relative addressing
instruction, the assembler develops it into a value of (-64 < V < +63).

— a memory reference instruction which requires indexing may use only register
0 as the destination of the operation.
if an index register expression is used with either the BXA or BSXA instruc-
tions it must specify index register #3 (either register bank) for indexing. Any
other value in the index field will produce an error during assembly. However,
it is not necessary to use an index register expression with these instructions;
a blank in this field will default to register 3.

160

LOAD/STORE INSTRUCTIONS Length (bytes) BIRA,r 	(*)a 	Branch on Incrementing Register Absolute 3
LODZ 	r 	Load Register Zero 1 BDRR,r 	(*)a 	Branch on Decrementing Register Relative 2
LODI,r 	v 	Load Immediate 2 BDRA,r 	(*)a 	Branch on Decrementing Register Absolute 3
LODR,r 	(*)a 	Load Relative 2 BXA 	(*)a(,x) 	Branch Indexed Absolute, Unconditional 3
LODA,r 	(*)a(,X) 	Load Absolute 3 ZBRR 	(*)a 	Zero Branch Relative, Unconditional 2
STRZ 	r 	Store Register Zero 1
STRR,r 	(*)a 	Store Relative 2 SUBROUTINE BRANCH/RETURN INSTRUCTIONS

STRA,r 	(*)a(,X) 	Store Absolute 3 BSTR,v 	(*)a 	Branch to Subroutine on Condition 2
True, Relative

ARITHMETIC INSTRUCTIONS BSFR,v 	(*)a 	Branch to Subroutine on Condition 2
ADDZ 	 Add to Register Zero 1 False, Relative
ADDI,r 	Add Immediate 2 BSTA,v 	(*)a 	Branch to Subroutine on Condition 3
ADDR,r 	(*)a 	Add Relative 2 True, Absolute
ADDA,r 	(*)a(,X) 	Add Absolute 3 BSFA,v 	(*)a 	Branch to Subroutine on Condition 3
SUBZ 	 Subtract from Register Zero 1 False, Absolute
SUBI,r 	 Subtract Immediate 2 BSNR,r 	(*)a 	Branch to Subroutine on Non-Zero 2
SUBR,r 	(*)a 	Subtract Relative 2 Register, Relative
SUBA,r 	(*)a(,X) 	Subtract Absolute 3 BSNA,r 	(Oa 	Branch to Subroutine on Non-Zero 3

Register, Absolute
LOGICAL INSTRUCTIONS BSXA 	(*)a(,x) 	Branch to Subroutine, Indexed, Unconditional 3
ANDZ 	r 	And to Register Zero 1 RETC,v 	Return From Subroutine, Conditional 1
ANDI,r 	v 	And Immediate 2 RETE,v 	Return From Subroutine and Enable 1
ANDR,r 	(*)a 	And Relative 2 Interrupt, Conditional
ANDA,r 	(*)a(,X) 	And Absolute 3 ZBSR 	(*),a 	Zero Branch to Subroutine 2
IORZ 	r 	Inclusive or to Register Zero 1 Relative, Unconditional
IORI,r 	v 	Inclusive or Immediate 2
IORR,r 	(*)a 	Inclusive or Relative 2 PROGRAM STATUS INSTRUCTIONS
IORA,r 	(*)a(,X) 	Inclusive or Absolute 3 LPSU 	 Load Program Status, Upper 1
EORZ 	r 	Exclusive or to Register Zero 1 LPSL 	 Load Program Status, Lower 1
EORI,r 	v 	Exclusive or Immediate 2 SPSU 	 Store Program Status, Upper 1
EORR,r 	(*)a 	Exclusive or Relative 2 SPSL 	 Store Program Status, Lower 1
EORA,r 	(*)a(,X) 	Exclusive or Absolute 3 CPSU 	 Clear Program Status, Upper, Selective 2

CPSL 	 Clear Program Status, Lower, Selective 2
COMPARISON INSTRUCTIONS PPSU 	 Preset Program Status, Upper, Selective 2
COMZ 	r 	Compare to Register Zero 1 PPSL 	 Preset Program Status, Lower, Selective 2
COMI,r 	v 	Compare Immediate 2 TPSU 	 Test Program Status, Upper, Selective 2
COMR,r 	(*)a 	Compare Relative 2 TPSL 	 Test Program Status Lower, Selective 2
COMA,r 	(*)a(,X) 	Compare Absolute 3

INPUT/OUTPUT INSTRUCTIONS

ROTATE INSTRUCTIONS Length (bytes) WRTD,r 	Write Data
RRR,r 	 Rotate Register Right
RRL,r 	 Rotate Register Left

1

1

REDD,r 	Read Data
WRTC,r 	Write Conti-,
REDC,r 	Read Control

1
1
1

BRANCH INSTRUCTIONS WRTE,r 	v 	Write Extended 2
BCTR,v 	(*)a 	Branch on Condition True Relative 2 REDE,r 	v 	Read Extended 2
BCFR,v 	(*)a 	Branch on Condition False Relative 2
BCTA,v 	(*)a 	Branch on Condition True Absolute 3 MISCELLANEOUS INSTRUCTIONS

BCFA,v 	(*)a 	Branch on Condition False Absolute 3 HALT 	 Halt, Enter Wait State 1
BRNR,r 	(*)a 	Branch on Register Non-Zero Relative 2 DAR,r 	 Decimal Adjust Register 1
BRNA,r 	(*)a 	Branch on Register Non-Zero Absolute 3 TMI.r 	v 	Test Under Mask Immediate 2
BIRR,r 	(*)a 	Branch on Incrementing Register Relative 2 NC 	 No Operation 1

161

APPENDIX F
NOTES ABOUT THE 2650 PROCESSOR
1. AUTO-INCREMENT, DECREMENT of index register. This feature is

optional on any instruction which uses indexing with the exception of
BXA and BSXA. The increment or decrement occurs before the index
register is added to the displacement in the instruction.

2. The contents of registers when used for indexing are considered to be
unsigned absolute numbers. Consequently, index registers can contain
values from 0 to 255. They "wrap-around" so that the number following
255 is 0.

3. Only absolute addressing instructions can be indexed.

4. The Branch on Incrementing Register or Decrementing Register instruc-
tions perform the increment or decrement before testing for zero. The
only time the branch address is not taken, is when the register contains
zero.

5. All hardware relative addressing is implemented as modulo 8K and there-
fore relative addressing across the top of a page boundary will result in a
physical address near the bottom of the page being accessed. For example:

1FFC16 	 LODR,R2 	 $+16

This instruction results, during execution, in accessing the byte at location
000C in the same page as the instruction. Similarly, negative relative
addresses from near the bottom of a page may result in an effective
address near the top of the page.

6. Page boundaries cannot be indexed across.

7. Data can always be accessed across a page boundary through use of
relative indirect or absolute indirect addressing modes.

8. The only way to transfer control to a program in some other page is to
branch absolute or branch indirectly to the new page. Program execution
cannot flow across a page boundary.

9. Unconditional branch or branch to subroutine instructions are coded by
specifying a value of 3 in the register/value field of BSTA, BSTR, BCTA
or BCTR. Example:

UN
	

EQU 	3
• • •

• • •

• • •

BSTA,UN PAL
BCTR,3 	LOOP

Unconditional branches on conditions false (BCFA, BCFR) are not allowed.

162

APPENDIX G

ASC II AND EBCDIC CODES

This table presents the only characters that the assembler will recognize
in an A or E type constant and their equivalent codes in hexadecimal.

VALID
CHARACTERS

EBCDIC
CODE

ASC II
CODE

VALID
CHARACTERS

EBCDIC
CODE

ASC II
CODE

0 FO 30 V E5 56
1 Fl 31 W E6 57
2 F2 32 X E7 58
3 F3 33 Y E8 59
4 F4 34 Z E9 5A
5 F5 35 blank 40 20
6 F6 36 4B 2E
7 F7 37 (4D 28
8 F8 38 + 4E 2B
9 F9 '39 1 4F 7C
A Cl 41 & 50 26
B C2 42 ! 5A 21
C C3 43 $ 5B 24
D C4 44 * 5C 2A
E C5 45) 5D 29
F C6 46 ; 5E 3B
G C7 47 —1 Or ~ 5F 7E*
H C8 48 60 2D
I C9 49 / 61 2F
J D1 4A 6B 2C
K D2 4B % 6C 25
L D3 4C — Or <- 6D 5F*
M D4 4D > 6E 3E
N D5 4E ? 6F 3F
0 D6 4F 7A 3A
P D7 50 # 7B 23
Q D8 51 @ 7C 40
It D9 52 7D 27
S E2 53 = 7E 3D
T E3 54 5) 7F 22
U E4 55 < 4C 3C

*may have different graphic symbols on different computer systems

163

APPENDIX H

COMPLETE ASCII CHARACTER SET

b4

(MSB)

b3

b7 0 0 1 1 1 1

. 1 1 0 0 1

b2

b5

b1
0 1 0 1 0 1

0 0 0 0 SP 0 @ P P

0 0 0 1 ! 1 A Q a q

o 0 1 0 " 2 B R b r

0 0 1 1 # 3 C S c s

0 1 0 0 $ 4 D T d t

0 1 0 1 % 5 E U e u

0 1 1 0 & 6 F V f v

0 1 1 1
/ 7 G W 9 w

1 0 0 0 (8 H X h x

1 0 0 1) 9 I Y i y

1 0 1 0 ' . J Z j z

1 0 1 1 +K , [k
{

1 1 0 0
/

< L \ I

1 0 1 — = M 1 m }

1 1 1 0 > N T n

1 1 1 1 / ? 0 E o DEL

1

APPENDIX I

2n

1
2
4
8

n

0
1
2
3

POWERS OF TWO TABLE

2-n

1.0
0.5
0.25
0.125

16 4 0.062 5

32 5 0.031 25
64 6 0.015 625
128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0,000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5

8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625

33 554 432 25 0.000 000 029 802 322 387 695 312 5

67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5

536 870 912 29 0.000 000 001 862 645 149 230 957 031 45

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625

2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25

8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5

34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625

137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

165

APPENDIX J

HEXADECIMAL-DECIMAL CONVERSION TABLES

From hex: locate each hex digit in its corresponding column position and note
the decimal equivalents. Add these to obtain the decimal value.

From decimal: (1) locate the largest decimal value in the table that will fit into
the decimal number to be converted, and (2) note its hex equivalent and hex
column position. (3) Find the decimal remainder. Repeat the process on this and
subsequent remainders.

Note: Decimal, hexadecimal, (and binary) equivalents of all
numbers from 0 to 255 are listed on panels 9 - 12.

HEXADECIMAL COLUMNS

6 5 4 3 2 1

HEX = 	DEC HEX = DEC HEX = DEC HEX = DEC HEX= DEC HEX = DEC

0 0 0 0 0 0 0 0 0 0 0 0
1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12
D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13

• E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

0123 4567 0123 4567 0123 4567

BYTE BYTE BYTE

The table provides for direct conversion of hexadecimal and decimal
numbers in these ranges:

Hexadecimal 	 Decimal

000 to FFF 	 0000 to 4095

In the table, the decimal value appears at the intersection of the row
representing the most significant hexadecimal digits (162 and 161) and
the column representing the least significant hexadecimal digit (16°).

RxamplP: 	 C2116 = 310510

HEX 0 1 2

CO 3072 3073 3074
Ci

OCIOQ ovou QAC2Q Qnan

C2 3104 3105 3106
C3 3120 3121 3122

1RR

APPENDIX J Cont'd.

0 1 2 3 4 5 6 7 8 9 A

00 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
01 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
03 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
04 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
05 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
06 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
07 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
08 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OA 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OB 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
OC 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
OD 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OE 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0271
11 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285

0270

12 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301
0287

3
13
14

0304
0320

0305
0321

0306
0322

0307
0323

0308
0324

0309
0325

0310
0326

0311
0327

0312
0328

0313
0329

0314
0330

0315
0331

0316 0317
0333

0318 0319
0335

15 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
18
19
lA
1B

0384
0400
0416
0432

0385
0401
0417
0433

0386
0402
0418
0434

0387
0403
0419
0435

0388
0404
0420
0436

0389
0405
0421
0437

0390
0406
0422
0438

0391
0407
0423
0439

0392

r284
0440

0393
0409
0425
0441

0394
0410
0426
0442

0395
0411
0427
0443

0396
0412
0428
0444

RN

0429
0445

0398
0414
0430
0446

0399

22'7-
IC 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0463

1D
lE
1F

0464
0480
0496

0465
0481
0497

0466
0482
0498

0467
0483
0499

0468
0484
0500

0469
0485
0501

0470
0486
0502

0471
0487
0503

0472
0488
0504

0473
0489
0505

0474

0506

0461

0490
0479 2'4'395 	2n 	2n

0491 	0492
	
0493
	05104'' 0507 0511

0 1 2 3 4 5 6 7 8 9 A

20 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0529 0523 0524 0525 0526 0527
21 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
24 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0566 0587 0588 0589 0590 0591
25 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27 0624 0625 0626 0627 0628 0699 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C 0704 0705 0706 070,7 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

0 1 2 3 4 5 6 7 8 9 A

30 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34 3832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

167

APPENDIX J Cont'd.

0 1 2 3 4 5 6 7 8 9 A

40 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
46 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

0 1 2 3 4 5 6 7 8 9 A

50 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

0 1 2 3 4 5 6 7 8 9 A B C D E F

60 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
6A 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

16941 69 5
1710 1711

6B 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

0 1 2 3 4 5 6 7 8 9 A

70 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
74 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
78 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7C 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

1R8

APPENDIX J Cont'd.

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
84 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87 2160 2161 2162 9161 9164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 8B 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
SD 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

0 1 2 3 4 5 6 7 8 9 A B C D E F

90 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
98 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 9D 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 9E 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 9F 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

0 1 2 3 4 5 6 7 8 9 A B C D E F

AO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 -'98 2589 2590 2591
A2 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
AS 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

0 1 2 3 4 5 6 7 8 9 A B C D E F

80 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
81 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B4 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
85 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
RD 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

169

APPENDIX J Cont'd.

0 1 2 3 4 5 6 7 8 9 A

CO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119

C3 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C4 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C8 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

0 1 2 3 4 5 6 7 8 9 A B C D E F

DO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D1 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

D2 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D4 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407

D5 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

D6 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439

D7 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D8 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D9 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

0 1 2 3 4 5 6 7 8 9 A 8 C D E F

EO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
El 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
65 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

0 1 2 3 4 5 6 7 8 9 A B C D E F

FO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
Fl 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F4 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 391& 3919
F5 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FC 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063

FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4073 4078 4079

FF 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4091 4094 4095

170

APPENDIX K
COMMAND SUMMARY

COMMAND
NAME 	 PARAMETERS 	 DESCRIPTION

DUMP. 	LOC, FWA-LWA(; . . . ;LOC, FWA-LWA) 	Display the area of memory. FWA-LWA, when-
ever the instruction at LOC executes.

FEND 	None 	 Execute the last simulation and terminate the
entire run.

INPUT 	VALUE(; . . . ;VALUE) 	 Define the data to be read by simulated I/O
instructions.

INSTR. 	LOC(; . . . ;LOC) 	 Display the processor registers whenever the
instruction at LOC executes.

LIMIT 	NO 	 Specify the total number of instructions executed.

PATCH 	LOC,VALUE(; . . . ;LOC,VALUE) 	Initialize each memory location, LOC, to VALUE.

REFER. 	LOC(; . . . ;LOC) 	 Display the processor register whenever the in-
struction at LOC is referenced by another
instruction.

SETP. 	LOC(,PSL=VALUE) (,PSU=VALUE) 	Set the program status byte (lower and/or upper)
to VALUE whenever the instruction at LOC
executes.

SETR. 	LOC(,RO=VALUE). . .(R6=VALUE) 	Set the general purpose registers to VALUE
whenever the instruction at LOC executes.

SROM 	FWA-LWA 	 Specify the boundaries of Read-Only Memory.

START 	LOC 	 Start the simulated program execution at LOC.

STAT 	None 	 Display instruction statistics at end of program
execution.

STOP. 	LOC(; ... ; LOC) 	 Terminate the program execution when the in-
struction at LOC executes.

TEND 	None 	 Execute the last simulation and prepare to read
the User Commands for the next simulation.

TRACE. 	FWA-LWA(; . . . ;FWA-LWA) 	 Display the processor registers whenever an in-
struction executes, which lies within the area of
memory, FWA-LWA.

171

APPENDIX L
ERROR MESSAGES

Whenever the Simulator detects an error in the User Commands, it
prints one of the following error messages:

ERROR IN OBJECT MODULE CARD NUMBER
the 2650 object module is incorrectly formatted.

INPUT DATA TABLE OVERFLOW
an INPUT command attempted to expand the simulated data input
buffer beyond its limit (200 bytes).

PARAMETER OUT OF RANGE
a User Command either contains an address which is outside the
bounds of simulated memory or the command defines a datum which
is larger than one byte (25510).

SIM MEMORY EXCEEDED
a 2650 object module loads into an area which is outside of simulated
memory.

SYNTAX ERROR IN COMMAND
the command parameters are either missing or in error.

TOO MANY COMMANDS
the maximum number of dynamic commands has been exceeded.

TOO MANY DUMP COMMANDS
the maximum number of DUMP commands has been exceeded.

TOO MANY SET REGISTER COMMANDS
the maximum number of SETR. commands has been exceeded.

TOO MANY SET PSB COMMANDS
the maximum number of SETP. commands has been exceeded.

11 4

UNRECOGNIZED COMMAND
a command has been read which is unknown to the Simulator.

UNEXPECTED END OF FILE
either the object module or the set of User Commands is missing, or
one of their respective card decks is incorrectly formatted, or the
FEND command is missing.

Whenever the Simulator detects an error while the simulated program is
executing it prints one of the following error messages:

ADDRESS OUT OF RANGE
an instruction attempted to access a location which lies outside of
simulated memory.

INSUFFICIENT INPUT DATA
a I/O instruction attempted to read another datum from the input
data buffer (INPUT) after all the data from the buffer had been read.
The simulated input register remains unchanged i.e., the instruction is
essentially ignored, and program execution continues.

LC= 	 ATTEMPT TO STORE INTO ROM
an instruction attempted to store data into the area designated as
ROM (SROM).

LC EXCEEDS MEMORY
the program attempted to execute a memory location which lies
outside of simulated memory.

NO KNOWN OPCODE
the program attempted to execute a memory location which did not
contain a valid instruction. Either the program was modified during
execution or the program is attempting to execute data.

173

APPENDIX M
SIMULATOR RESTRICTIONS

SIMULATOR RESTRICTIONS

1. The simulated memory reserved by the Simulator for program storage is
limited to 2048 bytes.* Thus, the Simulator will accept only programs or
program segments which fit into this area. This implies that the 2650
paging facility (page size = 8192 bytes) cannot be simulated.

2. Some User Commands are limited in the amount of entries they may
accept.

COMMAND 	 LIMIT

DUMP. 	 5 LOC's
SETR. 	 4 LOC's
SETP. 	 2 LOC's
INPUT 	 200 VALUE's
All "dynamic" commands 	30 LOC's (for TRACE. count 1

for each set of FWA-LWA)

APPENDIX N
SIMULATOR RUN PREPARATION

In order to prepare a program for execution by the Simulator, the
programmer:

1. Codes a program in 2650 Assembly Language.
2. Assembles the program until no assembly errors occur.
3. Obtains the object module and listing for the assembled program.
4. Generates command cards using addresses from the listing of the

assembled program.
5. Submits the object module and the command cards in that order for a

Simulator run.

174

sionnties
a subsidiary of U.S. Philips Corporation

Signencs Corporation
PO Box 9052

811 East Argues Avenue
Sunnyvale California 94086

Telephone 408/739-7700

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178

